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Abstract

We focus on the problem of automatically extracting the 3D configuration of human
poses from 2D image features tracked over a finite interval of time . This problem
is highly non-linear in nature and confounds standard regression techniques. Our
approach effectively marries a non-rigid factorization algorithm with prior learned
statistical models from archival motion capture database. We show that a stand alone
non-rigid factorization algorithm is highly unsuitable for this problem. However,
when coupled with the learned statistical model in the form of a constrained non-
linear programming method, it yields a substantially better solution.

1 Introduction
Given a monocular video which features a single human in motion, our goal in this work is to re-
construct the 3D configuration (seen from an arbitrary choice of a world coordinate system). We
assume that we have as input anatomically well-defined landmark points (such as major joints)
recorded from an orthographic or weak-perspective camera. Our emphasis is not in feature track-
ing, but rather on recovering the lost depth during image formation from noisy and possibly
incomplete data.

Human motion comprises of an enormous amount of inherent subtlety and variability. Conse-
quently the problem of inferring 3D pose from 2D image sequences is highly non-linear in nature
and confounds standard regression techniques. Besides, even if we have a good knowledge about
the projection matrix of the camera, for any single input observation of a human pose in 2D, there
are possibly multiple valid body configurations. Contrast this with our lack of judgment when
we see the Necker cube or for that matter some of the paintings by M.C. Escher. From a numeri-
cal point of view, this is a higher order (quartic) non-linear optimization problem, prone to local
minima. These local minima are intrinsic to the problem (termed as true illusions [1]).

Previous Work: A variety of statistical as well as deterministic methods have been developed
for extracting pose from single view image sequences. We can define a gross dichotomy on the
class of approaches: Ones that concentrates on learning a mapping from silhouette feature space
to 3D pose [2], and others that try to map more sparse feature points1 to 3D poses [3, 4]. Our
approach falls in the second category. For the more curious reader, we suggest [5] which catalogs
most of the important works on 3D human tracking.

1Usually strategically localized to anatomically meaningful landmark points



The solution approach in all of the above cases sans [4] is formulated as an (approximate)
probabilistic inference problem. Given an observation, they try to pick a pose from a prior distri-
bution which best fits the current likelihood. Though this is an extremely powerful tool, we note
that the methods do not explicitly address geometric properties or algebraic details of the data.
Rather, the methods appeal that these details get captured during the training stage and appear as
latent parameters. In essence, this transfers too much importance to the training stage.

An alternative less explored, is to borrow techniques from structure from motion (SfM) and
couple them with prior statistical knowledge. SfM [6] techniques are able to produce highly
accurate solution when the object is rigid, and is widely regarded as one of biggest success story
of computer vision. But, extending SfM to non-rigid scenario has turned out to be quite tricky.
One popular flavor of SfM algorithm is the Factorization algorithm [7–10].

In this work, we use a variant of recently proposed [10] non-rigid factorization method (NRF,
hereafter) for performing SfM.

Methodology: Factorization methods attempt to capture the implicit geometric invariants
present in a wide temporal window of input data. (An example invariant might be that two feature
points from a single rigid body should have similar motion trajectories. These invariants uncover
themselves as reduced rank constraints [7, 8, 10] on the data observation matrix consisting of
stacked (x,y) points. Further, this matrix can be factorized into two matrices, one representing
the rotation, and the other representing the shape of the object. A straightforward Singular Value
Decomposition (SVD) of this matrix results in the recovery of this factorization only up-to a
generalized linear corrective transform (Equation 3). Solving this linear transform is a non-trivial
task for several reasons as has been recently observed in the literature.

Further, the current factorization based solutions are not directly adaptable to the human
movement problem (our interest) since the quality of the solution degenerates very rapidly when
the “deformations” are large2 .

Contribution: In this paper we propose a novel constrained factorization algorithm, which
effectively couples prior learned statistical knowledge about human shape variability (and the
subspace it spans) from the ground truth motion capture data, with non-rigid factorization algo-
rithm. Specifically, we make use of motion capture data to build a prior reference pre-shape.
We assume that the recovered shape from the NRF algorithm should be structurally similar to
the reference pre-shape. This is formulated as a constrained non-linear programming problem.
These constraints on the structure of shape subspaces reduces the search domain and renders the
problem well-posed (Equation 6). We provide qualitative and quantitative results to demonstrate
the validity of our scheme.

Notation: We follow the notation used in [10]. a is a scalar, a is a vector and A is a matrix.
⊗ denotes Kronecker product. � denotes Hadamard product. vec(A) vectorizes A by stacking
its columns and vech(A) vectorizes only its lower triangular portion. A† denotes the generalized
inverse. vc(x,y) = vech(xyT +yxT−diag(x�y)). Note that vc(x,y) operator helps to represent
equations of the form vec(xTAy) when A is symmetric, more concisely as vc(x,y)T.vech(A)

Road Map In Section 2 we outline two different applications of existing NRF methods, which
are relevant in our context. We first describe how NRF can be used to de-noise and fill in miss-
ing entries of a noisy and possibly incomplete data sequence. This is followed up with a brief
overview of a straightforward way of using prior NRF methods, with our experiments that exposes
some problems. Section 3 formalizes our notion of shape and describes how shape variability of
an ensemble of data can be captured. Section 4 gives the details of a Sequential Quadratic Pro-
gramming based constrained optimization scheme which couples NRF algorithm with the learned
statistical data. We discuss our experiments and results in Section 5 and conclude in Section 6.

2 Non Rigid Factorization
Apart from structure from motion, factorization techniques can be applied to a wide range of
application like data segmentation, data de-noising and data imputation. Data de-noising and im-
putation are of significant interest to us since the feature tracks from the off-the shelf trackers are

2There has been some recent work on extending factorization methods for articulated structures [11, 12]. But these
methods require a very large number of features, whereas we work with a very sparse number of features and assume the
human body to be a deforming object
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Figure 1: A pictorial representation of a morphable model. The right hand side is the actual data
seen but can be obtained by modifying “basis” shapes.

typically noisy and contain missing information due to occlusion. The de-noising and structure
recovering capability of the factorization algorithm is reviewed in this section.

The Basics: A popular representation for image formation (for either non-rigid or articulated
objects) under orthographic or weak projective camera models is to write

W f = R f (
K

∑
i=1

c f iSi)

where W f is the observed 2D feature in frame f (out of F given frames), R f ∈ R2×3 is the
truncated row-orthonormal rotation matrix. K is the number of morph shapes needed to fully
represent the object, Si ∈ R3×P the ith morph shapes (where P refers to the number of feature
points tracked), and c f i, the morph weights corresponding to S in the f th frame. This is pictorially
represented in Fig. 1.

We build an observation matrix W ∈ R2F×P by stacking the position of P landmark points
observed in F frames. The structure of the observation matrix W appears in the left hand side of
Eq. 1. Here (xi j,yi j) refers to the 2D co-ordinates of the point j in frame i.

P =


x11 · · · x1P
y11 · · · y1P
... · · ·

...
xF1 · · · xFP
yF1 · · · yFP

 = MS =

 cT
1 ⊗R1

...
cT

F ⊗RF


︸ ︷︷ ︸

2F×3K

 S1
...

SF


︸ ︷︷ ︸

3K×P

(1)

This factorization can be performed modulo a gauge factor of G ∈ GL(3K,3K) [8] using
SVD, if we assume an isotropic and Gaussian noise model3. But when there are outliers and
missing data, which indeed is the case with most real-life measurements due to tracking failure
and outliers, a straightforward SVD is no longer applicable.

2.1 Data denoising and missing information recovery
The most commonly used approach is to re-write the above problem with some robust ρ-function
where the contribution of each item is weighted according to its fitness to the subspace [13,
14]. The modified factorization problem is now to compute the maximum likely estimator of a
weighted L2 norm cost function.

εmle(M̃, S̃) = ||W� (P−M̃S̃)||2F (2)

where wi j ≥ 0 is a weighing factor which specifies the uncertainty in pi j and wi j = 0 if pi j is
missing

The literature on factorization with missing data falls into several categories: close-form solu-
tions, imputation methods, EM-akin alteration methods and direct non-linear minimization meth-
ods. An excellent comparative study between these various method can be found in [14].

3Note that though the factorization assumes that temporal dependices in the data are caught by the tracker, the rank
constraint enforces another layer of weak and subtle constraint on the contunity of motion.



(a) Surface plots of noisy+incomplete data(top) ,
De-noised data(middle) and Ground Truth(bottom).
Notice that the recovered data has a high similarity
to the ground truth

Uncorrupted Data Incomplete and Noisy Data Recovered Data

(b) Clean(left), corrupted(middle) and denoised(right) ob-
servation matrices using our method

Our Denoising Method: We make use of the second order damped Newton algorithm intro-
duced in [14] to de-noise the noisy point tracks. But we additionally perform modified Gram-
Schmidt orthogonalization on the current estimate of both M̃ and S̃ at each iteration. Note that
Eq. 2 does not impose any structure on M̃ or S̃, whereas SVD based solutions ensured that M̃
and S̃ are orthonormal and form good bases. We find that enforcing the orthonormality at each
step makes the algorithm more numerically robust, rather than performing one single SVD toward
the end. We initialize the optimization with left and right subspace estimate from a sparse SVD
of the incomplete data matrix. We weigh the visible features isotropically. These weights are
estimated by contrasting the singular value spectrum of the sparse SVD with the mean value of a
prior computed ensemble of spectrum of non-noisy, complete and typical data sets. The features
which are not visible are assigned zero weights. A typical example is shown in Fig. 2(a). The
deep trenches in the top figure corresponds to the missing data feature points. Observe that these
valleys disappear after the de-noising step (middle figure). Moreover, the recovered data has a
high similarity to the ground truth (bottom figure).

2.2 Recovering Motion and Shape
As mentioned earlier, unfortunately this factorization is not unique, but determinable only up to a
non-singular linear corrective transformation G as

M = M̃.G S = G−1.S̃ (3)

where we have the true scaled rotation matrix M and shape matrix S. The heart of the non-linear
factorization algorithm lies in solving for this corrective transform G ∈ GL(3K×3K) as described
briefly below.

Let xT
f and yT

f be the pair of rows in M which gives the projection for frame f . Notice that M
is made up of blocks of 2×3 scaled rotation matrices. Hence rows of each of these 2×3 blocks
must be orthogonal and of equal norm.

xT
f y f = 0 (orthogonality constraint)

x̃T
f GGT ỹf = 0⇒ vc(x̃f, ỹf)vech(GGT) = 0
xT

f x f = yT
f y f ⇒ (x f −y f )T (x f +y f ) = 0 (equal norm constraint)

(x̃ f − ỹ f )T GGT (x̃ f + ỹ f )⇒ vc(x̃f− ỹf, x̃f + ỹf)vech(GGT) = 0
Let L = [vc(x̃f, ỹf),vc(x̃f− ỹf, x̃f + ỹf)]T∀ f and QA = LLT

(4)
Note that M1:3 = M̃G1:3 ∈ R2F×3. It turns out that solving for G1:3 is sufficient to solve for the

rest of the G [10]. The vanilla NRF computes G1:3GT
1:3 that minimizes the sum squared deviation

from orthogonality in the final motion matrix by least squares solving the system of equations
given by

OrthErrQA(G1:3) = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3) (5)



The symmetric matrix G1:3G1:3 is later decomposed to G1:3 by performing a rank-3 EVD (G1:3 =
VΛ0.5)

Significantly, it was recently shown [9] that these rotation constraints are not sufficient to
uniquely solve for the corrective transform G for articulate and non-rigid motions. More specif-
ically the general solution of the rotation constraints is GHGT , where H is the summation of an
arbitrary block skew symmetric matrix and an arbitrary block scale identity matrix. The culprit be-
ing the redundancy in the constraint matrix which leaves the solution to Eq. 5 under-constrained.
One way to overcome this ill-posedness is a heuristic scheme proposed by the authors of [9] where
shapes in K frames are assumed to be independent and will act as a set of bases. Unfortunately, in
general, this is not a good practice, since it tries to represent the shape space non-parsimoniously
with a finite set of local diffeomorphisms, and hence has questionable subspace representation
ability [15].

An alternative appears in [10] where Brand makes another relevant observations that approx-
imation of Eq. 5 as a nested linear least square solution doesn’t do justice to the physical reality.
It overlooks a lot of co-variance information encoded in QA. Instead, the author solves G1:3 di-
rectly from Eq. 5 using a variant of first order line search global optimization framework (the
step sizes are calculated by direct root finding). Once again, significantly our experiments gives
ample room to suspect that the error surface has a rough terrain and many a times converge to the
dreaded local minima. An example is show in Fig. 2.

Figure 2: Non-rigid factorization algorithms have the tendency to flatten the body structure (notice the
legs). The red colored human model is the representation of the actual data and the pink colored model is a
reconstruction from 2D data.

The vanilla NRF, does not make any assumption about the shape of the object in scene. But a
huge chunk of vision related engineering problems (in our case human pose extraction) do allow
us to make valid assumption regarding object shape subspaces and possibly get an estimate of the
subspace apriori. In the next section we describe how a good prior estimate of shape subspace
can be obtained.

3 Shape Analysis
The word “shape” is very commonly used in everyday language, usually referring to the appear-
ance of an object. Following Kendall [16] the definition of shape that we consider is:

Shape is all the geometrical information that remains when location, scale and rota-
tional effects are filtered out from an object

Important aspects of shape analysis are to obtain a measure of distance between shapes, to
estimate average shapes from a random sample and to estimate shape variability from a random
sample.

Procrustes analysis involves matching configurations with similarity transformations to be as
close as possible according to Euclidean distance, using least squares techniques. More formally,
given two mean centered configuration matrices X1 and X2, the full Procrustes distance between
X1 and X2 is

Dpro =
inf

Γ∈SO(3),β∈R ||Z2−βZ1Γ||

where Xr = Zr/||Xr||,r = 1,2



Similarly, the full Procrustes estimate of mean shape [µ̂] is obtained by minimizing (over µ)
the sum of square full Procrustes distance from each Xi to an unknown unit mean configuration
µ , i.e

[µ̂] = arg infµ

n

∑
i=1

d2
F(Xi,µ)

For a more detailed exposition, we refer the readers to [17] and the original work of Kendall [16]

3.1 Creating The Reference Pre-Shape
In the last decade or so, principal component analysis (PCA) has become a favorite tool for
computer vision and graphics researchers [18, 19]. PCA is a simple, yet powerful technique to
collect and investigate the statistically variability of data which resides in linear spaces (R3 in our
case). To learn a good set of bases we need a corpus of accurate data with wide variability, which
now a days is publicly available in the form of archival motion capture data.

Each pose is parametrized as a single observation 60 dimensional column vector (vec(Qtrain))
containing the Euclidean positional information of all the land mark points4. We borrow tech-
niques from Procrustes Analysis introduced in the previous section to strip these vectors of posi-
tional, scale, and orientation details.

If µ̂ be a pre-shape corresponding to the full Procrustes mean shape, the aligned vectors can
be computed as

vF = (1−vec(µ̂ µ̂
T))vec(β̂iQtrainΓ̂i)

These aligned vectors are stacked into a data matrix Xmocap and we compute the principal com-
ponents of this data matrix. PCA performs a basis transformation to an orthogonal co-ordinate
system formed by the eigen vectors Vi of the covariance matrix of Xmocap. These orthogonal com-
ponents are ordered with respect to the descending values of their eigenvalues and are arranged
into Sref. We call Sref as Reference Pre-shape. For a full body motion with just 5 bases we are
able to represent more than 94% variation in the data.

4 Constrained Factorization
The primal idea behind our method is that shapes recovered by the NRF should having significant
similarity to the pre-learned Reference Pre-Shape. We express this as a constrained non-linear
programming problem.

More formally, we rewrite Eq. 5 as

E(G1:3) = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3)

S.T trace(G1:3GT
1:3) = 1

D2
pro(G1:3, S̃S†

ref)≤−d
(6)

where Dpro(X,Y) gives the orthogonal Procrustes distance between X and Y and d is an user-set
parameter, which specifies the tolerance level for the structural variation and defines the feasible
area or the domain of the cost function (smaller the tolerance, narrower the feasible area) . In
our experiments we used 0.2 as the threshold. Though it is tempting to decrease the tolerance,
lesser tolerance makes the algorithm more prone to over-fitting (especially if the training set is
not exhaustive enough).

Notice that both our cost function and constraints are non-linear. While the cost function is
quartic, the constraints are of quadratic nature. Though constrained non-linear optimization (in
general) is still an open problem, many efficient, but approximate numerical schemes exist [20]
especially for relatively lower order cost function (quartic, in our case) and near linear constraint
functions (quadratic). We make use of Sequential Quadratic Programming, a well know and
used numerical solution for optimizing smooth non-linear cost functions under smooth non-linear
constraints [20,21]. It is Newton like in that it requires second derivatives of the cost function and
potentially provides quadratic convergence.

The goal is to extremize a scalar cost function E(x) subject to a vector of constraints c(x)≤ 0.
(Note that inequality constraints can be treated at par with the equality constraint by assuming its

4Note that the ordering (or the meta-knowledge about it) of this vector has to be consistent with the 2D observation
vector.



respective Lagrange multiplier vanishes whenever the inequality is not strict [20] and is strictly
positive whenever the inequality is strict). Lagrange multipliers λ give an implicit solution.

5E +λ 5 c = 0 with c(x) = 0

We resolve this iteratively starting from some initial guess bx0. We approximate the cost to
second order and the constraints to first order at x0, giving a quadratic optimization sub-problem
with linear constraints.

min
δx

(
5E.δx+

1
2

δxT 52 f .δx
)
|c+5c.δx

This sub-problem has an exact linear solution(
52E 5cT

5c 0

)(
δx
λ

)
=−

(
5E

c

)
(7)

We solve for δx, update x0 to x1 = x0 +δx, re-estimate derivatives and iterate to converge.
The first order and second order derivatives of the Lagrange function in Eq. 6 are given in

Appendix A.

5 Experiments
Training Data: We use 700 frames from motion capture data included in the HumanEva
dataset [5] for learning the pre-shapes. These frames are selected by randomly sampling from
the training set provided in the dataset. Selected frames span poses from various set of human
action like walking, boxing, making hand gestures etc.

Testing: We test the performance of our algorithm on synthetic data with ground truth in-
cluded in the testing set of the HumanEva dataset, as well as videos which give us only 2D
information.

Motion-Capture Based Synthetic Data: In any choice of motion clip (from the motion cap-
ture data base) we know the 3D positions. We synthetically created a two dimensional projection
by randomly choosing a center of projection. To simulate tracking errors and the like, the result-
ing “features” are further corrupted by adding Gaussian noise and frames dropped randomly to
simulate quantifiable error and occlusion errors in the tracking process. This constituted the pro-
cess of creating the observation matrix. The incomplete and noisy observation matrix is denoised
using the method described in Section 2. Recall that the output of factorization is only accurate
up-to an arbitrary rotation and scale. So the error at each frame is defined to be the Procrustes
distance from the recovered orientation to the ground truth. We compare the performance of our
algorithm to that of the unconstrained case [10].

Fig. 3 shows ground truth (left) contrasted with the output of our algorithm (middle) and the
unconstrained case (right). The recovered pose by the unconstrained algorithm is nearly planar
(notice the stick figure’s left arm piercing its torso). The newly introduced boundary conditions
ensured that the recovered solution did not collapse into a degenerate solution unlike the uncon-
strained state, and is found to be quite similar to the ground truth.

Figure 3: Ground truth data contrasted with the output from the constrained (our method) and non-
constrained factorization (prior method) respectively.



Next, we compared the performance of both algorithms over a novel long sequence (show
in Fig. 4(a)). This sequence is novel in that it was not used for the computation of the refer-
ence pre-shape. We selected a complicated clip of a boxing motion consisting of 577 frames
sampled at 30Hz. Fig. 2(b) shows the ground truth matrix, corrupted observation matrix, the de-
noised observation matrix and a comparative plot of error using both the algorithms (from left to
right). The data is corrupted with 10% additive Gaussian noise and around 15% of its observa-
tions are masked out. Note that average performance of the constrained factorization algorithm
hovers around the 5–15% reconstruction error mark. One interesting variation in the plot is that
occasionally (frame numbers 290–320, 348–355 and 380–395) the error of the unconstrained al-
gorithm dips somewhat below that of its constrained counter part (our method). The reason for
this unexpected better performance is that during these frames, the actor is assuming a near planar
pose and the degenerate shape base extracted by the unconstrained factorization algorithm is bet-
ter able to explain these frames. Nevertheless, the unconstrained algorithm rapidly loses accuracy
in the more common situation, when the actor resumes his or her flexible movements.

The scatter diagram in Fig. 4(b) plots the average error recorded by the constrained factoriza-
tion algorithm (shown in yellow) and its unconstrained counterpart (shown in cyan) for various
data input (a total of 39 different inputs). Each of the data input was seeded with 2% additive
Gaussian error, and no occlusion condition was assumed. While carrying out these experiments
we further assumed that the inequality constraints are strict. Fig. 4(c) shows the performance of
both the version of the algorithm with three different sequence (walking, boxing and running)
when subjected to different amount of synthetic noise. Superior performance by the constrained
version of the algorithm is amply recorded in every experiment.
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Figure 4: Comparative Performance Evaluation

5.1 Data With No Ground Truth
In this experiment an 80 frame video sequence was semi-automatically tracked using the KLT
based tracker. We hand picked the features which conformed to the anatomically relevant land-
mark points. We re-picked the lost features after every 10 frames. Do note that far superior
tracking schemes exist [22] for tracking humans from video. The purpose of this experiment was
to test the performance under non-linear error models which often appear in real data sequences.
Two different ‘pigeon’ views of the recovered orientation of the actor is shown along with ac-
tual data is show in Fig. 5. As a post-processing step, the recovered data is smoothed out using a
Kalman smoother. More output including the video of the just explained experiment can be found
at http://www.cse.iitb.ac.in/appu/bmvc07/

6 Conclusion and Future Work
We have given a novel constrained non-rigid factorization algorithm that extracts 3D human poses
from 2D video sequences. Both qualitative and quantitative results were provided. Note that our
method can be applied to any deforming data sequences (apart from human motion), provided
accurate motion capture or similar high precision quantized data exists.

Future Work: The strength and weakness of factorization based techniques lies in its block
based nature. This potentially rules out any online scheme. We are currently exploring the pos-
sibility of having a windowed scheme, thereby making the algorithm semi-online. We are also

http://www.cse.iitb.ac.in/appu/bmvc07/


Figure 5: The top row shows the raw frames with features overlayed. The middle and bottom shows the
recovered 3d pose rendered from two novel view points. The front view is identical and not shown.

considering having an iterative refinement of reference pre-shape, hence equipping the algorithm
to handle non-stationary data, and previously unseen data. Another possibility we wish to explore
is to merge the optimization given in Eq. 2 and Eq. 6 as a single optimization problem.

A Derivatives
The corresponding Lagrange function of Eq. 6 can be written as

L = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3)+λ (vec(G1:3)Tvec(G1:3)−1)

+µ(vec(G1:3− S̃S†
refΓ)Tvec(G1:3− S̃S†

refΓ)−d) (8)

where Γi ∈ SO(3). Let Z = G1:3 and Ji j ∈ {0,1}3K×3 is all zeros except for element Ji j = 1

∂L (Z,λ ,µ)
∂Zi j

=2vech(ZZT)TQAvech(ZJT
ij +JijZT)+λvec(ZJT

ij +JijZT)

+ µ(vec((Z− S̃S†
refΓ)JT

ij +Jijvec((Z− S̃S†
refΓ)T)

∂L (Z, ,λ ,µ)
∂λ

=vec(G1:3)Tvec(G1:3)

∂L (Z, ,λ ,µ)
∂ µ

=vec(G1:3− S̃S†
refΓ)Tvec(G1:3− S̃S†

refΓ)

∂L (Z,λ ,µ)
∂ZijZkl

=2.vech(ZJT
kl)+JklZT)QA.vech(ZJT

ij +JijZT)

+(vech(ZZT)TQA +λ + µ)vech(JklJT
ij +JijJT

kl)

(9)
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