
Recognizing Plays in American Football Videos

Behjat Siddiquie
University of Maryland

College Park, MD 20742
behjat@cs.umd.edu

Yaser Yacoob
University of Maryland

College Park, MD 20742
yaser@umiacs.umd.edu

Larry S. Davis
University of Maryland

College Park, MD 20742
lsd@cs.umd.edu

Abstract

We address the problem of recognizing American Foot-
ball plays in video. In contrast to recent work on activ-
ity recognition this is a much more challenging problem as
it involves the actions of multiple players. We propose a
method which builds on recent advances in activity recogni-
tion, such as using shape and motion based spatio-temporal
features and building a space-time representation of the
video. Furthermore, we use Multiple Kernel Learning to
effectively combine different features. We also propose an
extension to the Multiple Kernel Learning method, which
optimizes the number of kernels selected, thereby improving
efficiency. We demonstrate our approach on a challenging
dataset consisting of a variety of football plays and obtain
promising results, in the process we also discover some in-
teresting aspects of different types of football plays.

1. Introduction
Recognizing human actions in videos is an important re-

search area in the field of computer vision. Activity recogni-
tion has a wide range of applications such as video indexing
and retrieval, video surveillance and sports video analysis.
As a result it has received considerable interest over the last
few years. A common approach for action recognition in-
volves extracting local features from videos, representing
the video in terms of these local features and, finally classi-
fication.

Much of the work on action recognition has focussed
on two datasets, the KTH and Weizmann datasets [23, 9,
24, 21]. These datasets contain scenarios where actions
are performed by a single person against a homogeneous
background, viewed with a static camera. Though there has
also been some work on recognizing human actions in more
realistic settings such as movies or videos from YouTube
[13, 14, 18], these approaches are still limited to recogniz-
ing activities where at most one or two people are involved.
In this paper we investigate the problem of recognizing ac-
tivities in which multiple people are involved. Specifically,
we focus on identifying the type of play in American Foot-
ball videos. Currently, football coaches spend significant
time studying football videos to gauge the strengths and

weakness of their own team as well as future opponents.
Our research has potential applications in supporting query
and retrieval on football videos which would considerably
reduce the amount of manual work currently involved in the
analysis of these videos.

We classify a football play into one of seven play types.
Compared to single person action recognition problems,
this is a much more challenging problem as the type of a
play is influenced by the actions of multiple people and the
movement of the ball. Unlike previous approaches deal-
ing with multi-agent activities [8, 17], we do not track the
motion of individual players nor do we employ any high
level reasoning. Instead, we use only low-level features and
rely on a machine learning based feature selection method
to identify the discriminative features for classification of
the football plays.

We utilize spatio-temporal features to represent both
shape and motion, employing spatio-temporal pyramids to
build a space-time representation and use Multiple Kernel
Learning [12] to effectively combine different features. We
also propose an extension to an existing Multiple Kernel
Learning method [22], where we reformulate the problem
to sparsify the weights assigned to the kernels, thereby im-
proving its efficiency. Additionally, we also propose recog-
nizing the play type, as early in the execution of the play as
possible.

The next section describes related work. Section 3 de-
scribes our method. Section 4 describes the experiments
and results, which is followed by the conclusion.

2. Related Work
There has been a large body of work on action recog-

nition. Though most of it has focussed on recogniz-
ing actions of a single human in relatively controlled set-
tings [4, 23, 9, 5, 24, 21], there has also been work on rec-
ognizing human activities in realistic situations [13, 14, 18].
Two of the key insights from these efforts have been to use
multiple heterogeneous features and to combine them using
an effective classification model to integrate their comple-
mentary information.

A variety of local feature descriptors have been devel-
oped for describing actions in videos. Spatio-temporal fea-
tures, such as histograms of space time gradients, have been
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Figure 1. Preprocessing: frames from video(top row) are stabilized and then warped to a virtual football field(bottom row). The feature
extraction is done on the warped video.

shown to be effective for action recognition [13, 14, 4, 24].
Optical flow based features are used to represent the lo-
cal motion patterns in video sequences. In [13, 14], his-
tograms of optical flow have been used, while [23, 9] em-
ployed a biologically inspired model to encode dense flow
information. Static features, that capture the human pose
at each time instant have also been used [18]. Typically,
the Bag-of-Features model is used to represent the occur-
rence of these local features, by constructing a vocabulary
of visual words for quantizing them. This Bag-of-Features
model can be further augmented by encoding the spatio-
temporal relationships between the local features. Methods
such as spatio-temporal pyramid matching [13], which pro-
vide a coarse description of the spatio-temporal layout of
the video, have been shown to improve recognition.

Combing multiple features has been shown to be effec-
tive for improving action recognition performance. In gen-
eral, appearance and motion based features contain com-
plementary information and several techniques have been
proposed for combining them. Fanti et al. [5], proposed
a mixture of both static and dynamic features for action
recognition. Schindler et al. [23] and Jhuang et al. [9], also
combine shape and motion features to improve recognition
accuracy. In [14, 18], AdaBoost is used to combine multiple
features for recognizing actions in realistic settings. Laptev
et al. [13], combine kernels computed from HOG and HOF
features over different spatio-temporal grids.

A number of techniques have been proposed to learn the
optimal combination of a set of kernels, computed from
multiple features, for SVM-based classification. Lanckriet
et al. [12], introduced the Multiple Kernel Learning(MKL)
method to learn a set of linear combination weights for com-
bining multiple kernels and the SVM parameters for the
resulting kernel simultaneously in a semidefinite program-
ming framework. Rakotomamonjy et al. [22], substantially
increased the efficiency of MKL by reformulating it us-
ing a 2-norm regularization as a convex optimization prob-
lem. Additionally, their formulation utilized an l1-norm

constraint for favoring sparse kernel combinations. Varma
and Ray [26], combined multiple features using MKL and
showed a considerable increase in the classification accu-
racy on several object recognition datasets. In [6], a fast
multiple learning method was proposed for learning kernel
weights over the codebook of visual words.

Activity recognition for multiple people has focussed on
analysis of sports video, [7, 15, 19]. Other work has dealt
with recognizing abnormal activities in video [28, 10, 1].
Classification of American Football plays has been pro-
posed in [25, 8, 17]. In [25], a non-stationary kernel hid-
den markov model is used for recognizing football plays.
Intille and Bobick [8], recognized football plays by using
Bayesian networks for modeling the interactions between
the players. In [17], multiple person activity is modeled
as a four-dimensional object-time interaction tensor that
is reduced to a discriminative temporal interaction matrix,
which is then classified using a probabilistic framework.
However, both [8, 17], have been demonstrated on data
with human annotated player trajectories and player roles,
for which the amount of manual work required is signifi-
cant. It is unclear if they will maintain their performance
when these tasks are automated, as tracking and identity
maintenance would be extremely hard in football games due
to occlusions and players wearing similar clothing. In con-
trast, in our method the only annotation required is the class
labels for the training set.

3. Classification for Play Recognition
We evaluate our method on a dataset consisting of 78

videos of play instances collected from NCAA football
games. Previous work on this dataset has been presented
in [25, 17]. The videos are similar to typically broadcast
sports videos. They taken from a camera located in the
stadium, which pans to keep the players within the field
of view and also frequently zooms in and out, during the
course of the play. These videos cannot be directly pro-
cessed as the camera motion severely degrades the quality



Figure 2. The class hierarchy of the football plays.

of the spatio-temporal features. Therefore, we first stabi-
lize each video to negate the effect of the camera motion
and then warp the videos to a virtual football field to en-
sure that all the videos have a consistent spatial representa-
tion. Figure 1 illustrates this process for frames from one
of the videos of our dataset. The plays consist of seven dif-
ferent classes - left-run, middle-run, right-run, short-pass,
option-pass, rollout-pass, deep-pass. The hierarchy of the
play classes is shown in Figure 2.

3.1. Feature Extraction
Existing works on action recognition [4, 13, 24], use lo-

cal spatio-temporal features extracted from interest points.
Local spatio-temporal features have been shown to perform
well for action recognition and they are known to be robust
to background clutter and scale and illumination changes.
Typically, a set of spatio-temporal interest points are first
identified using interest point detectors, and the video is
then represented by spatio-temporal features extracted from
3D space-time blocks centered at the interest points.

We adopt a similar approach for feature extraction. How-
ever, instead of sampling features from sparse interest
points, we extract them from a dense 3D grid. Due to
small errors in the stabilization, there is some jitter intro-
duced into the videos and hence dense features prove to
be more robust. The size of each 3D space-time block
is (Vx, Vy, Vt) and they are sampled on a dense 3D grid
(Vx/2, Vy/2, Vt/2) apart, providing a 50% overlap between
neighboring blocks. As all the videos are warped to the
same virtual field, they have a consistent scale and hence
we use a fixed scale for the 3D blocks. To characterize local
appearance and shape, we use histograms of oriented gra-
dients(HOG). Each 3D block is partitioned into a grid with
nx × ny × nt spatio-temporal sub-blocks, and HOG fea-
tures are computed for all the sub-blocks and are normalized
and concatenated. To represent local motion patterns, His-
tograms of Optical Flow(HOF) features are extracted from
each 3D spatio-temporal block in a similar manner. We set
Vx, Vy = 32 pixels, chosen so as to roughly correspond to
the size of a human in the videos and Vt = 8 frames.

3.2. Bag-of-Features
We combine feature vectors from all the videos and clus-

ter them using k-means to create a Bag-of-Features vocab-
ulary, which consists of the cluster centers. Separate vo-

Figure 3. The spatial grid used for spatio-temporal pyramid match.
The different colors denote the pyramidal blocks at different lev-
els. Note that there are also 3 levels in the temporal dimension(not
shown).

cabularies, consisting of 150 visual words each, are created
for the HOG and HOF features. This quantizes the feature
space and enables representation of each video in terms of
the vocabulary. Given a test video, the local features ex-
tracted from the space-time blocks are assigned to the clos-
est visual words by Euclidean matching. The occurrences
of each of the visual words can then be used to represent the
video.

3.3. Spatio-Temporal Pyramid Match
The Bag-of-Features representation does not capture any

information regarding the spatial and temporal distribution
of the visual words. To overcome this problem Lazebnik et
al. [16] proposed the spatial pyramid match method, which
encodes the spatial geometry of the scene at a coarse level
and has proven to be very effective for object and scene
recognition. Given the spatial distributions of a visual word
in two images, it computes a measure of the spatial correla-
tion between the two distributions by repeatedly subdivid-
ing the image space into smaller sub-images and computing
the correspondence between the distributions in all those
sub-images. This method can also be applied for action
recognition in video by extending it to the temporal dimen-
sion [13]. Using the Spatio-Temporal Pyramid Match a pair
of videos will be highly similar, if they have similar space-
time distributions of visual words. For a pair of videos xi
and xj and a given visual word wl, the Spatio-temporal
pyramid match computes a similarity kernel Φl(xi, xj), be-
tween them. Taking into account all visual words, this sim-
ilarity measure can be written as:

Φ(xi, xj) =
∑

k

Φl(xi, xj) (1)

Here all the visual words are given equal weights. It
has been shown that the resultant Φ forms a mercer kernel
and hence can be used for classification using kernel based
methods, such as SVMs. To ensure that Spatio-Temporal
Pyramid match captures semantically relevant information,
instead of pyramidally subdividing the video equally in all
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Figure 4. Classification Procedure: In the first stage the features
are extracted and quantized in terms of the visual vocabulary. Next
the Spatio-Temporal Pyramid Match is used to obtain the kernel
similarities to the training set with respect to all the visual words.
Finally Multiple Kernel Learning is used to combine the kernel
distances and obtain the class label.

dimensions, we position the pyramidal grid such that it is
spatially centered at the point in the field where the snap
takes place(Fig. 3). This ensures that the regions behind
and in front of the scrimmage line1 and the areas to the left
and the right of the point of snap1 are well demarcated. We
use a pyramidal grid consisting of 4 levels in the spatial
dimension(Fig. 3) and 3 levels in the temporal dimension,
resulting in a 8 × 8 × 4 spatio-temporal grid at the finest
level. These parameters have been empirically determined.

3.4. Multiple Kernel Learning
Spatio-Temporal Pyramid match combines information

from multiple features channels and also from the different
visual words of each feature channel. Instead of weighting
all the kernels uniformly, as in Equn. 1, one would like to
find a set of optimum weights dl that maximize the discrim-
inative power of the similarity metric Φ with respect to the
classification problem. The optimal kernel can be computed
as a convex combination of the basis kernels:

Φ(xi, xj) =

K∑
k=1

dkΦk(xi, xj),

K∑
k=1

dk = 1 , dk ≥ 0 (2)

where xi are the data samples(videos), φk(xi, xj) is the
kth kernel and dk are the weights given to each visual word

1The scrimmage line refers to the imaginary line parallel to the yard
lines where the play starts. The snap refers to the act of starting the play
and the point of snap refers to the position of the ball at the time of the start
of play.

(kernel). Learning the classifier model parameters and the
kernel combination weights in a single optimization prob-
lem is known as the Multiple Kernel Learning(MKL) prob-
lem [12]. There have been a number of formulations for
the MKL problem, as noted in Section 2. The MKL opti-
mization equation is given by:

min
∑

k

1

dk
wkw

T
k + C

∑
i

ξi

such that yi

∑
k

φk(xi) + yib ≥ 1− ξi ∀i (3)

ξi ≥ 0 ∀i, dk ≥ 0 ∀k,
∑

k

dk = 1

where b is the bias, ξi is the slack afforded to each data
point and C is the regularization parameter. The solution to
the above MKL formulation is based on an iterative two
stage method [22]. In the first stage, the kernel weights
dk are fixed and the above equation reduces to the stan-
dard SVM optimization problem, which can be solved with
any SVM solver. In the second stage, the SVM parame-
ters are fixed and a projected gradient descent is performed
to minimize the objective function with respect to the ker-
nel weights. The two stages are repeated until convergence.
MKL results in learning higher weights for the more dis-
criminative kernels and assigns low weights to the redun-
dant ones, leading to a significant improvement in classifi-
cation performance. Unlike [26], where Multiple Kernel
Learning has been used for combining kernels computed
over multiple features and spatial pyramidal levels, we learn
a linear combination of kernels computed over the visual
words from different feature channels. Figure 4 illustrates
our entire recognition framework.

3.5. Sparse Multiple Kernel Learning
The Multiple Kernel Learning formulation in equation 3,

imposes an l1 norm constraint on the kernel weights dk.
This constraint, apart from ensuring that

∑
dk = 1, also

restricts the search space and results in an efficient solu-
tion. In the MKL formulation of [11], an l2 norm has
been used for constraining the kernel weights. The com-
parison of the effect of l1-vs-l2 norm constraints on MKL
has been previously studied [27]. Typically, the l1 norm
constraint ensures a sparser solution and is more effective
in the presence of noisy kernels. While on the other hand,
l2 norm based approaches, though less sparse and suscep-
tible to noise, are known to more effectively combine ker-
nels containing orthogonal information. In our case, kernels
are computed from each visual word using spatio-temporal
pyramid match. The quantization of the feature descriptor
in terms of visual words usually leads to lots of redundant
visual words and a very small number of discriminative vi-
sual words [2]. Hence, we argue that, a sparse solution to
the kernel weights is better suited to our approach. We pro-
pose a new formulation of MKL with an approximate l0
norm constraint, which assigns non-zero weights to only the



most discriminative visual words(kernels) leading to a very
sparse and hence more computationally efficient solution.

The l0 norm constraint on the kernel weights can be writ-
ten as: ‖dk‖0 ≤ r. This corresponds to imposing a limit r,
on the total number of kernels with non-zero weights, and
hence can be used for restricting the number of kernels se-
lected by MKL. However, imposing the l0 norm constraint
is in general NP-hard and this is typically overcome by an
approximation to the l0 norm. In [3], a method has been
proposed for approximating the l0 condition by imposing a
reweighted l1 norm penalty and has been applied for sig-
nal reconstruction. We adapt this method for the purpose of
sparsifying the MKL solution. The MKL objective func-
tion(Eq. 3) is modified by adding an extra regularization
term to get:

min
∑

k

1

dk
wkw

T
k + C

∑
i

ξi + β
∑

k

tkdk

such that yi

∑
k

φk(xi) + yib ≥ 1− ξi ∀i (4)

ξi ≥ 0 ∀i, dk ≥ 0 ∀k,
∑

k

dk = 1

Where β is the regularization parameter and the tks are
”adaptive weights” assigned to the kernel weights. This for-
mulation can be solved by modifying the MKL solution,
described earlier. The regularization term is an adaptively
weighted l1 norm penalty on the kernel weights. At the
end of each iteration of the MKL optimization algorithm,
the weights tk are reset as tn+1

k = 1
dn

k +ε , to adaptively ap-
proximate the l0 norm condition. This ensures that, tk is
low when the corresponding kernel weight is high and vice
versa, which penalizes the kernels with low weights and
drives them towards zero, thereby ensuring a sparse solu-
tion. The parameter ε can be modified to control the spar-
sity. This sparse MKL method can be used for selecting a
very small subset of discriminative visual words, while ex-
cluding the large majority of redundant visual words present
in the vocabulary. This significantly reduces the number
of kernel computations required by Spatio-Temporal Pyra-
mid Match, leading to improved efficiency. In subsec-
tion 4.5, we demonstrate the effectiveness of our sparse
MKL method.

4. Experiments and Results
4.1. Classification Results

Our dataset consists of seven classes, which have a well
defined semantic hierarchy(Fig. 2). It has been previously
shown that hierarchical classification in a semantically rel-
evant manner can increase performance [20]. Hence we
adopt a simple hierarchical classification scheme, consist-
ing of two levels and three base classifiers. In the first level,
we train a classifier to classify a play as a run or pass. The
second level consists of two base classifiers, one each for

Pass Run
Pass 87.1 12.9
Run 8.3 91.7

Table 1. Confusion matrix for the run-vs-pass classification.

Left-Run Middle-Run Right-Run
Left-Run 89.9 10.0 0.1

Middle-Run 23.9 68.1 8.0
Right-Run 0.0 14.4 85.6

Table 2. Confusion matrix for classification of the run plays.

Short Option Rollout Deep
Short-Pass 81.4 10.0 8.3 0.3

Option-Pass 46.0 42.8 10.8 0.4
Rollout-Pass 6.8 12.8 69.2 11.2
Deep-Pass 1.8 9.0 10.7 78.5

Table 3. Confusion matrix for classification of the pass plays.

classifying the run and pass plays into their respective sub-
classes. We also compare the performance of this hierarchi-
cal classifier to a simple multi-class classifier. We now de-
scribe the performance of base classifiers and the combined
classifier. All the experiments consisted of 5-fold cross val-
idation, repeated 50 times with different randomly selected
training and test videos, and the average per-class recogni-
tion rate was recorded.

Run-vs-Pass: For Run-vs-Pass classification at the top
level using the base classifier, the recognition rate is 89.4%.
The confusion matrix is shown in Table 1. In the next two
subsections we analyze the affect of different features on
the performance of this classifier.
Run Plays: At the next level, for the classification of run
plays into left-run, middle-run and right-run, we obtain a
classification accuracy of 81.2%. From the confusion ma-
trix(Table 2), it is clear that most of the error occurs be-
tween left-run/middle-run and middle-run/right-run. This is
because of the lack of a hard separating boundary between
those two pairs of classes.
Pass Plays: For the classification of the pass plays into
short-pass, option-pass, rollout-pass and deep-pass plays,
the recognition rate is 70.3%. The confusion matrix is
shown in Table 3. The recognition rate is lower compared
to the classification of the run plays because the distinctions
between these classes are subtle and often result from the
actions of a particular player at a given instant of time. The
deep-pass class has a relatively high recognition as it has a
larger spatial extent on account of the long passes and hence
is easier to distinguish.
Overall Results: When using the hierarchical classifier, we
obtain an average classification accuracy of 71.9% for all
the seven classes. The confusion matrix is shown in Fig-
ure 5. On performing a flat classification, the recognition
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Figure 5. Confusion matrix for the overall classification.

rate is 67.1%. It is clear that the hierarchical classification
results in an improvement in the results. These results are
substantially better than the 58% recognition rate obtained
by [25] on the same dataset. Our results also compare fa-
vorably to Li et al. [17] who obtain a recognition rate of
87.9% on an easier subset of this data consisting of just 5
classes, moreover they have also used human annotations
for the player trajectories and the player roles.

4.2. Features
The Histograms of Oriented Gradients(HOG) based vi-

sual words can encode local actions such as standing, walk-
ing and running and can also differentiate between the ac-
tions of an individual player and the actions of a group of
players together. These characteristics make HOG features
useful for distinguishing between pass and run plays. On
the other hand, the Histogram of Optical Flow(HOF) based
features capture direction of local motion and are useful for
discriminating between the left-middle-right run plays. To
evaluate the performance of the HOG and HOF features,
individually as well as when combined, we use MKL for
learning a combination of kernels computed from the HOG
visual words, the HOF visual words and all the visual words
together. Figure 6 shows the performance of each of the
base classifiers and the hierarchical classifier using HOG,
HOF and both of them combined. It is clear that combining
the these two features improves results. This is in agree-
ment with [13, 18, 23], who suggested that shape and mo-
tion based features contain complementary information and
combining them improves the action recognition accuracy.

4.3. Discriminative Visual Words
To gain further insight into the classification, we ana-

lyzed the weights assigned to different kernels by MKL.
Discriminating kernels are assigned high weights by MKL
and hence they represent the set of distinguishing fea-
tures(visual words). For the run-vs-pass classification, the
discriminative features corresponded to one or two play-
ers running along the field(Fig. 7(a)). In pass plays, play-
ers from the attacking team frequently run along the field
to receive a pass and players from the defending team run

0 0.2 0.4 0.6 0.8 1

Overall 

Pass 

Run 

Pass−vs−Run 

Accuracy

HoG
HoF
Both

Figure 6. Performance of each of the base classifiers and the over-
all classifiers using HoG and HoF features separately and when
combined together.

along with them intending to prevent them from receiving
the pass. This kind of activity rarely happens in run plays
and is therefore an important distinguishing characteristic
between run and pass plays. Other discriminative features
corresponded to groups of players running together in the
same direction(Fig. 7(b)), which occurs in run plays but is
uncommon in pass plays. The spatial density of the occur-
rence of the top five discriminative visual words in the pass
and run plays is shown in Fig. 8. In case of the pass plays it
is interesting to see that the density of the distribution cor-
relates very well with the motions of the receivers and it is
clear that the spatial distribution of the visual words is also
an important discriminating factor between the pass and
run plays, hence validating our incorporation of the Spatio-
Temporal pyramidal framework. These findings show that
our recognition method, without any kind of domain knowl-
edge, is able to identify such high level characteristic fea-
tures of the data and incorporates them into the learning of
the classifier.

4.4. Predicting the Play in Advance

Schindler et al. [23], have shown that very few frames
are sufficient for accurately recognizing basic human ac-
tions. In our case, since there are complex interactions be-
tween multiple players involved, it might take even a human
observer a few seconds to discern the type of play. Never-
theless, we evaluate our approach for recognizing a play,
given only its first few frames, thereby predicting the out-
come of the play in advance. Our experimental approach
is as follows. We use only the features extracted from the
first f frames of the training videos to build a classifier
Cf , which is evaluated by testing it on the first f frames
of the test videos. The results, shown in Figure 9, plot
the overall accuracy as well as accuracy of the individual
classes, of Cf versus the number of frames observed, f . In
all the cases, the initial results are close to random, but as
time progresses and more information becomes available,
the recognition accuracy rapidly increases. For the run-vs-
pass classification(Fig. 9(a)), we achieve a recognition rate
of 80% by the 50th frame, even though the average length of
a video is about 111 frames. Similarly for classification of
the run plays we have an accuracy of about 70% by the 70th



(a) Pass Play (b) Run Play

Figure 7. The locations of the discriminative visual words. The squares denote the spatial locations of the 3D patches from which the
discriminative visual words were extracted at a particular time instant. Each color denotes a different visual word. In a Pass Play(a), the
discriminative visual words correspond to receivers running to receive a pass, while in a Run Play(b), they represent a group of players
running together.
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Figure 8. The spatial distribution of the top five discriminative vi-
sual words in pass plays(top) and run plays(bottom). All the plays
have been centered so that their scrimmage line is aligned with the
50 yard line and that the snap takes place on the red dot in the cen-
ter. In case of the pass plays, the distribution has a well defined
spatial pattern.

frame(Fig. 9(b)). In the pass play classification(Fig. 9(c))
as well as the overall classification(Fig. 9(d)), the recogni-
tion rate reaches the peak level within a very few frames.
These results show that our approach can predict the play
type well in advance of the end of the play.

4.5. Sparse Kernel Learning
We study the affect of sparsity in kernel selection on the

classification performance, using the sparse Multiple Ker-
nel Learning technique described in 3.5. We evaluate our
method on the Run-vs-Pass classification which is a binary
classification problem as well as on the overall classification
which is a multi-class problem. The sparsity can be con-
trolled by varying the parameter ε, decreasing ε increases

sparsity and vice-versa. In case of the Run-vs-Pass classi-
fication, we vary ε, keeping the other parameters fixed and
plot(Figure 10(a)) the recognition accuracy versus the num-
ber of visual words(kernels) with non-zero weights. We
compare the performance with simpleMKL [22] which uses
the l1 norm constraint. It is clear that even with a very small
number of visual words it is possible to achieve high clas-
sification accuracy. In case of the multi-class problem, the
individual one-vs-all classifiers independently select differ-
ent sets of kernels and hence all the selected kernels are not
utilized by all the individual classifiers. To overcome this
problem, we use a two stage approach, the sparse Multi-
ple Kernel Learning method is used only for selecting the
discriminative kernels and then simpleMKL is used to per-
form Multiple Kernel Learning on only the selected kernels.
Figure 10(b) plots the accuracy vs the number of kernels
selected, and here again very few kernels are sufficient to
achieve a high recognition rate. The results support our hy-
pothesis that a very few carefully selected visual words are
sufficient for good discrimination and this can be exploited
by sparse approaches for improving efficiency during the
classification phase by reducing the number of kernel com-
putations required.
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Figure 10. The performance of the sparse Multiple Kernel Learn-
ing method as a function of the number of kernels selected. The
number of kernels(visual words) required for effective classifica-
tion can be reduced by a factor of about 10 compared to sim-
pleMKL [22]. In case of the overall classification(b), a flat one-
vs-all classifier is used.
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(a) Run-vs-Pass
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(b) Run Plays
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Figure 9. The recognition results of the base classifiers and the overall classifier as a function of the number of frames.

5. Summary
We have proposed a learning based approach for rec-

ognizing plays in American football games. Our method,
based on discriminative feature selection framework, is able
to identify high level properties of the data and utilize them
for learning the classifier. We have demonstrated the effec-
tiveness of our method on a challenging dataset of football
videos. We have also proposed a sparse Multiple Kernel
Learning method and shown that one can achieve high clas-
sification accuracy with a small number of suitably chosen
visual words. We are currently looking into the possibil-
ity of generalizing our method for other sports and common
activities.
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