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ABSTRACT

We present an approach for classifying images of charts
based on the shape and spatial relationships of their prim-
itives. Five categories are considered: bar-charts, curve-
plots, pie-charts, scatter-plots and surface-plots. We intro-
duce two novel features to represent the structural informa-
tion based on (a) region segmentation and (b) curve saliency.
The local shape is characterized using the Histograms of
Oriented Gradients (HOG) and the Scale Invariant Feature
Transform (SIFT) descriptors. Each image is represented
by sets of feature vectors of each modality. The similarity
between two images is measured by the overlap in the distri-
bution of the features - measured using the Pyramid Match
algorithm. A test image is classified based on its similarity
with training images from the categories. The approach is
tested with a database of images collected from the Internet.

1. INTRODUCTION

An average business computer user generates tens of charts
and plots each week. This is in addition to the millions of
potentially useful images of data-plots available on the In-
ternet. We present an approach for classifying computer
generated charts into different categories e.g. bar-charts,
curve-plots, etc. This can be employed to automatically de-
termine the type of chart depicted in a given image. Such a
classification would be useful for further analysis of the data
presented in the chart, semantic description of the chart, or-
ganizing a large collection of images of charts, etc.

Five types of charts are considered: bar-charts, curve-
plots, pie-charts, scatter-plots and surface-plots. The objec-
tive is to model the structures of these categories so that a
chart image can be classified into one of them. We assume
that the chart has been isolated from the rest of the doc-
ument using document-layout analysis, e.g., [5, 16]. The
classification is challenging due to:

• Variability in the data being depicted. Consider the
case of pie-charts - changes in the number of entities

represented in the pie-chart and their relative quanti-
ties leads to variations in the structure of the pie-chart.

• Stylistic variation in terms of the color palette, shad-
ing, geometry, etc., makes structural analysis of the
images difficult. E.g., pie-charts can be drawn in 3D
with perspective distortion, by “exploding” the seg-
ments, with images overlayed within the segments.

• Presence of ancillary structure such as text, legends,
axes, grids, etc.

In spite of this variability, each category has a distinc-
tive primitive which is used to depict information. E.g., for
bar charts a rectangle, for curve plots a salient curve. The
classification is performed by characterizing the primitives
and their spatial relationships. Shape and perceptual group-
ing features are used to compute statistics of the primitives
present in each category of images. The classification is per-
formed by measuring the similarity between the primitives
present in a given test image and the learnt statistics. We
introduce two novel features for characterizing the struc-
tural information based on: (a) region segmentation and
(b) edge continuity. In addition, local shape is character-
ized using two state-of-the-art gradient descriptors - His-
togram of Oriented Gradients (HOG) [6] and Scale Invari-
ant Feature Transform (SIFT) [13]. The similarity between
two images is quantified by the overlap in the distributions
of these features, measured using the Pyramid Match algo-
rithm [8]. An image is classified based on its similarity with
training images of each category. The approach is tested
with a database of images of charts collected from the Inter-
net. Figures 7 and 8 show a subset of the database grouped
according to the classification results.

1.1. Overview of the Approach and Related Work

Each image is processed in three stages:

1. Preprocessing:An open-source Optical Character Recog-
nition (OCR) utility [1] is used to detect text in the
image. A Gaussian-derivative kernel is used to com-
pute the image gradients.



2. Feature extraction:The primitives present in the im-
age are characterized using shape and perceptual group-
ing features.

3. Distribution of the features:A multi-resolution pyra-
midal histogram is computed for the obtained set of
feature vectors.

During the training stage, the Pyramid Match algorithm [8]
is used to compute the similarity between each pair of train-
ing images and a classifier is trained to classify based on
these similarity scores. A test image is matched with each
of the training images to obtain a vector of similarity scores,
which is used for classifying it into one of the chart cate-
gories.

The image primitives are characterized using:

1. Structure of salient regions present in the image.A
color clustering algorithm is used to obtain a segmen-
tation of the image. Each of the obtained regions is
characterized by the histograms of the boundary ori-
entations and the edge distance-map within the seg-
ment (c.f. Section 2).

2. Local shape of salient curves.An approach proposed
in [9] is used to enhance the gradients of salient curves
present in the image. A localized version of the Radon
transform is used to characterize the shape of the curves.

3. SIFT: SIFT and its variants have been shown to be ef-
fective for object detection and image retrieval appli-
cations. We use an implementation of SIFT proposed
in [13].

4. HOG descriptors: HOGs consist of normalized his-
tograms of image gradients w.r.t. various orientations,
collected within rectangular regions in the image. They
have been used as features for detecting pedestrians
in [6], etc. The studies indicate that HOG features are
robust to changes in illuminations and color-appearance.

2. REGION SEGMENTATION FEATURES

The region segmentation features are used to characterize
image primitives that are salient regions, e.g., the pies in pie-
charts. A large number of studies have been proposed for
image segmentation based on color and texture, e.g., Nor-
malized Cuts and its variants [18], Algebraic Multigrid [7],
color clustering [10].

We use a split-and-merge color clustering algorithm for
image segmentation. Each pixel is represented by a 5 di-
mensional vector consisting of its spatial coordinates and
RGB values. Initially, all pixels in the image are put in a sin-
gle cluster. In each iteration, clusters with variance greater
than ∆split are split into two clusters, and pairs of clus-
ters whose union’s variance is below∆mergeare merged.
This process is repeated until the cluster memberships reach
an equilibrium, yielding a set of “super-pixels” for the im-
age. Next, the intervening-contour feature proposed in [12]

is used to merge adjacent clusters that are likely to belong
to the same object in the image.

Fig. 1 shows examples of images and the corresponding
segmentations. Due to the use of split-and-merge cluster-
ing, the number of clusters does not have to pre-specified.
Regions with uniform color but having a “thin” structure,
e.g. lines, are broken into multiple segments. The reason is
that the intervening contour criterion assigns low likelihood
for merging them.

(a) (b)

Fig. 1. Examples of region segmentation: (a) Image,
(b) color map of the segmentation. (Best viewed in color.)

Two features are extracted from each region segment:

1. Histogram of the gradients’ orientations (HOG) along
the boundary of the segment. The orientation values
are quantized intono uniform bins. The histograms
are weighted by the gradient magnitudes.

2. Histogram of edge distance-map values within the seg-
ment. The Canny edge operator is used to compute an
edge map of the image. The distance-map of the im-
age quantifies the distance of each point on the image
plane from the nearest edge. The presence of large
distance-map values in the histogram indicates spa-
tially extended segments with few or no “holes”. In
contrast, a majority of low distance-map values would
indicate that the segment is thin, e.g. a curve or a
scatter of small legends. The distance-map values are
quantized intond bins of size∆d.

The HOG and the distance-map histograms are concate-
nated to form one feature vector for each region segment.



This gives a set,Fseg, of feature vectors for the image.

3. EDGE CONTINUITY FEATURES

Edge continuity is used to enhance the saliency of long con-
tinuous curves w.r.t. edges formed by scattered distributions
and text. It has been studied in computer vision in the con-
text of perceptual grouping and saliency. Shashua and Ull-
man constructed a network of edge elements for comput-
ing the saliency of edges based on curvatures [17]. Parent
and Zucker used osculating circles to define edge continu-
ity [14]. Guy and Medioni combined this with tensor voting
to obtain saliency maps for images [9]. Williams et al. used
a stochastic model to compute the probability that a con-
tour connecting two edges on the image plane would pass
through an intermediate point [20]. An edge affinity model
was used for contour matching in [15]. We combine this
with the tensor voting approach proposed in [9] for comput-
ing the saliency of the curves.

Each edge casts a vote at each of its neighboring edges
for the possible orientations of the contours passing through
them. The orientation and weights of the votes are com-
puted using edge continuity constraints. Studies on edge
grouping typically assume that curves with low curvature
are more likely. In the model presented in [14], given two
image points and the orientation of the edge at one of them,
the most likely curve is assumed to be a circle passing through
them. This is called the osculating circle. See Fig. 2.
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Fig. 2. Osculating circle given two pointsy andz lying on
it and the tangent to the curve aty.

The radius of the osculating circle for two pointsy and
z is denoted byr(y, z). It can be shown that

r(y, z) =
‖y − z‖
2 sin θ

(1)

whereθ is as shown in Fig. 2. The vote cast byey at ez

has orientation tangential to the osculating circle atz, i.e.
ψ = 2θ + φ. An affinity function for edge continuity was
formulated through an analysis of contours in [15]. It is
used to compute the weight for the vote cast byey atez:

a(ey, ez) =
1

1 + exp(− r(y,z)−λ1
λ2

)
‖∆I(y)‖ ‖∆I(z)‖ (2)

∆I(.) denotes the image gradient field. The constantsλ1

andλ2 are assigned values6 and0.9, respectively [15].

The vote is defined to be the tensorv(ey, ez)

v(ey, ez) = a(ey, ez)
[

cos2 ψ sin ψ cosψ
sin ψ cos ψ sin2 ψ

]
(3)

The net vote cast at an edge is computed as

w(ez) =
∑

ey∈N(ez)

v(ey, ez) (4)

HereN(.) defines am×m neighborhood around each edge.
When the orientations of the votes cast at an edgee are

consistent, the rank ofw(e) is 1. Letλ1(e) andλ2(e) be the
eigen values ofw(e) (λ1 ≥ λ2). The gradient saliency map
on the image edges is defined as

s(e) = λ1(e)− λ2(e) (5)

For a long contiguous curve, the votes cast at its edges will
be consistent, resulting in high saliency. In contrast, edges
with randomly oriented neighbors get inconsistent votes, re-
sulting in low saliency. Fig. 3 shows some images and the
salient curves obtained.

Two set of features are extracted from the gradient saliency
maps:

1. HOG: Histograms of the image gradients’ orienta-
tions in them×m neighborhood of each edgee with
s(e) ≥ ∆sal. The orientation values are quantized
intono uniform bins. The histograms are weighted by
the saliency values. The set of HOGs computed from
the gradient saliency map is denoted byFHOGSal.

2. Local Radon transformof the saliency maps(.) at
each edgee with s(e) ≥ ∆sal. The Radon Trans-
form has been studied in medical imaging for 3D re-
construction, and in the shape representation litera-
ture. It is computed by taking projections of a 2D fig-
ure on straight lines oriented at different angles w.r.t.
the axes. See Fig. 4 for an illustration. The set of
local Radon transforms computed from the gradient
saliency map is denoted byFRadSal.
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Fig. 4. Illustration of Radon transform: local projections are
computed along various orientations - here shown at30◦.
Each projection is performed withinρ× δρ bands placed at
∆ρ intervals.



(a)

(b)

(c)

Fig. 3. Examples of salient edge: (a) Image, (b) Gradient magnitude map with edges of detected text suppressed, (c) Edge
saliency map. (Best viewed in color.)

4. SIFT

The Scale Invariant Feature Transform (SIFT) is a local ap-
pearance based feature employed for image registration and
object detection [13]. A large number of key-points are de-
tected based on extrema in the image’s scale-space. Each
key-point is described using statistics of the image gradi-
ents in its neighborhood. The sizes of the neighborhoods
are determined from local scale-space characteristics. This
technique was extended by describing the key-points with
the Principle Component Analysis (PCA) of the local im-
age gradients, called PCA-SIFT [11]. A number of object
recognition and image retrieval approaches have been pro-
posed using SIFT and PCA-SIFT, e.g. [19, 8], etc. The de-
scriptors have been shown to be robust to affine, scale and
illumination variation. We use the SIFT descriptor imple-
mented in [13]. Fig. 5 shows examples of images and the
detected SIFT key-points. The set of SIFT feature vectors
obtained for an image are denoted byFSIFT.

5. GRADIENT DESCRIPTORS

Two descriptors are employed:

1. Histograms of Oriented Gradients (HOG):A num-
ber of variations of HOG have been used for key-
point description e.g. [4, 11, 13], pedestrian detection
e.g. [6]. We employ the descriptors used in [6]. The
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Fig. 5. Examples of SIFT key-point detection: (a) Im-
age, (b) key-point locations, orientation and scales indicated
with squares. (Best viewed in color.)

HOGs are computed inm×m neighborhoods around
each edge; the orientations are quantized intono uni-
form bins. The set of HOG vectors computed for an
image are denoted byFHOG.

2. Distance Map Histograms: The distance map val-
ues in the neighborhood of an edge indicate the pres-
ence/absence of neighboring edges. The distance map
histograms are computed inm × m neighborhoods
around each image edge. The distances are quantized
into nd bins with size∆d. This gives a set,FDT of
feature vectors.

6. CLASSIFICATION

The classification is performed in the following stages:



1. The feature sets (F ’s) are computed for each image
in the database.

2. A multi-resolution histogram is computed for each
feature modality for each image.

3. For each feature modality, the Pyramid Match algo-
rithm is used to compute similarities between all pos-
sible pairs of images. For a database ofM images,
this results in aM × M similarity matrix for each
feature modality. The similarity values quantify the
images’ relative positions in an embedded space. Let
l be the number of feature modalities. Each image
is represented by anlM dimensional vector,fsim, ob-
tained by concatenating the similarity values from the
feature modalities.

4. For each pair of chart categories, a boosting tech-
nique [2] is used to determine the most discriminative
components from thelM dimensions. The discrimi-
native components for all pairs of categories are com-
bined to obtain a low dimensional representation of
the image similarities, denoted byfredSim. The com-
ponents of this vector represent the training images
that are the most discriminative members of each cat-
egory.

5. A multi-class Support Vector Machine (SVM) [3] is
trained to classify thefredSim’s into the chart-categories.

6.1. Pyramid Match

The Pyramid Match algorithm was proposed for computing
the similarity between two set of features vectors [8]. The
sets can have different cardinalities. The approach has been
shown to be efficient and effective for image retrieval ap-
plications. Given a set of feature vectors, a pyramid (multi-
resolution) histogram is computed. The scale of quantiza-
tion bins at each level of the histogram is half that of the
previous level’s bins. The match between two pyramid his-
tograms is measured by the overlap in the bins, with higher
weight given to overlap at finer scales. See [8] for details.
Fig. 6 shows the similarity matrix obtained for HOG fea-
tures of the curve saliency maps.

7. EXPERIMENTAL RESULTS AND SUMMARY

The approach was tested with a database of chart images
collected from the Internet. The database consisted of 124
bar-charts, 117 curve-plots, 130 pie-charts, 158 scatter-plots
and 124 surface-plots - 653 images in total. The exper-
iments were conducted in 5 trials, in each trial1

5 of the
data was used for testing and the rest was used for train-
ing1. Tab. 1 shows the classification results. Figures 7 and 8

1Values of the parameters used in the experiments:
∆split = 500 ∆merge = 300 m = 41 no = 8
ρ = 41 δρ = 5 ∆ρ = 5 ]bands= 5
∆d = 3 nd = 6 ∆sal = 0.1

Fig. 6. Similarity matrix for the images computed for HOG
of curve saliency maps (FHOGSal).
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Bar-charts 112 2 2 4 4
(90%)

Curve-plots 7 89 8 10 3
(76%)

Pie-charts 2 6 108 1 13
(83%)

Scatter-plots 10 10 0 136 2
(86%)

Surface-plots 3 7 6 3 105
(84%)

Tab. 1. Confusion matrix for the classification

show a subset of the charts database grouped according to
the computed labels.

The following observations can be made about the re-
sults:

• One of the bar-charts that are misclassified as a curve-
plot has a line plotted over the bars. 3 of the bar-charts
misclassified as surface-plots are 3D bar-charts with
large cuboids as primitives.

• 5 of the curve-plots misclassified as pie-charts have
solid colors filled in between the curves. It is likely
that the region segmentation features for these images
resemble those for pie-charts resulting in the errors.
This highlights the need for better shape features for
the region segments.

• 5 of the pie-charts misclassified as surface-plots have
dense imagery or text printed on the charts. The tex-
ture and lines present in these images are likely to be
a cause for the errors.

• 6 of the scatter-plots misclassified as curve-plots have
lines of best fit drawn on them.

• Of the surface-plots misclassified as scatter-plots, one
image has a scattered distribution of globules plotted



in addition to a surface, and another case is a 4D plot
depicted as a scattered distribution of legends in 3D
whose color depends upon the4th dimension.

7.1. Summary

We presented an approach for classifying charts into vari-
ous categories based on the shape and spatial relationships
of their primitives. Sets of features based on region segmen-
tation, curve saliency, HOG and SIFT are extracted from
the image. Similarity between images is measured by the
overlap in the distributions of these features - computed us-
ing the Pyramid Match algorithm. The categorization is
accomplished by boosting the features and classifying us-
ing SVMs. The classification results indicate the utility
of the approach. The features used for the classification
are generic, admitting their applicability for other document
classification tasks. We are currently exploring the features
for semantic analysis of the charts.
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Fig. 7. Subsets of the classification results for bar-charts, curve-plots and pie-charts



Fig. 8. Subsets of the classification results for scatter-plots and surface-plots


