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Abstract
We present an active learning framework to simultaneously

learn appearance and contextual models for scene understanding
tasks (multi-class classification). Existing multi-class active learn-
ing approaches have focused on utilizing classification uncertainty
of regions to select the most ambiguous region for labeling. These
approaches, however, ignore the contextual interactions between
different regions of the image and the fact that knowing the la-
bel for one region provides information about the labels of other
regions. For example, the knowledge of a region being sea is infor-
mative about regions satisfying the “on” relationship with respect
to it, since they are highly likely to be boats. We explicitly model
the contextual interactions between regions and select the question
which leads to the maximum reduction in the combined entropy of
all the regions in the image (image entropy). We also introduce a
new methodology of posing labeling questions, mimicking the way
humans actively learn about their environment. In these questions,
we utilize the regions linked to a concept with high confidence as
anchors, to pose questions about the uncertain regions. For exam-
ple, if we can recognize water in an image then we can use the re-
gion associated with water as an anchor to pose questions such as
“what is above water?”. Our active learning framework also in-
troduces questions which help in actively learning contextual con-
cepts. For example, our approach asks the annotator: “What is
the relationship between boat and water?” and utilizes the answer
to reduce the image entropies throughout the training dataset and
obtain more relevant training examples for appearance models.

1. Introduction
Object recognition is one of the most challenging prob-

lems in computer vision. The performance of most recogni-
tion approaches, generally, depends upon the diversity and
quantity of examples in the training dataset. There have
been recent efforts aimed at gathering large training [1, 3].
However, these approaches have sought to obtain annota-
tions for all the images in the dataset without prioritizing
them on the basis of diversity. Such an approach leads
to sub-optimal performance under finite/limited resources
(manpower).

Due to the difficulty in obtaining a large amount of hu-
man labeling, many recent efforts have employed an active
learning framework to choose regions to be labeled by hu-

Figure 1. Region Entropy vs. Image Entropy: If we utilize re-
gion entropy only, region R1 is selected for labeling since it has
higher entropy than all other regions. Therefore, obtaining label
of R1 would lead to maximum reduction of entropy. On the other
hand, if we consider image entropy and model the information
yield due to contextual interactions, region r1 is selected over R1

since the label for r1 would also provide information about other
uncertain regions, such as r3.

man annotators. These approaches utilize the uncertainty in
classification, asking humans to label examples which are
hard to classify using the classifiers learned from previously
labeled data. However, most of the work in active learning
for visual recognition has focused on obtaining labeling for
binary classification problems, especially where objects oc-
cur in isolation (such as the CALTECH-256 dataset [4]). In
the case of multi-class classification, these approaches seek
to obtain the labels of high entropy regions.

We present a new framework for active selection of ques-
tions that simultaneously learns appearance and contextual
models for scene understanding (multi-class classification)
tasks. Our framework is based on active learning from natu-
ral images containing multiple objects. Traditionally, active
learning approaches select questions which solicit the labels
of uncertain regions. In contrast, we model contextual in-



Figure 2. Types of Questions: Region labeling questions are the conventional questions utilized by active learning approaches. Here at
each iteration the system asks the annotator to annotate the most uncertain region. Linguistic questions use the high confidence labels in
the image to pose questions about uncertain regions. For example, since water is easy to recognize, the region associated with it is used to
ask “what is above water”. Contextual questions are the questions about contextual interactions between pairs of objects in the world. For
example, the system asks “what is relationship between boat and water”. Contextual questions can be utilized to reduce the entropy of the
all the training images since concepts can help in dis-ambiguating other uncertain regions.

teractions between image regions and solicit labels for those
regions that yield significant reduction in the combined en-
tropy of all the regions in the image (image entropy). There-
fore, our criteria selects regions which are likely to yield
information about the other confusing regions in the image
as well. For example, consider the scenario shown in fig-
ure 1. Traditional active learning approaches would select
region R1 to be labeled, since it is the most uncertain re-
gion. In contrast, our approach would evaluate the impor-
tance of each label not only based on the local region en-
tropy, but also on how much new information that labeled
region would provide about other uncertain regions in the
image. Therefore, our approach selects r1 since knowledge
of r1 label (boat) would yield information that would help
reduce entropy of other regions, such as r3.

One issue with using muti-object images for learning is
localization of the objects of interest. Current active learn-
ing approaches handle this by either asking annotators to
provide the boundaries or prompting labels on segmenta-
tions / super-pixels [22]. While such conventional labeling
questions can be included in our active learning criteria, we
also introduce linguistic questions which utilize additional
constructs (such as prepositions or adjectives) in language
for handling localization. In linguistic questions, the re-
gions that can be linked to a concept with high confidence
are used as anchors to ask questions about unknown regions
in the scene. For example, in figure 2(b), the water region
(easy to recognize) can be utilized as an anchor to ask ques-
tions such as “ what is on the water?”. Visual attributes of
regions can also be used for anchoring, and lead to questions
such as “What is the white region in the image?”. These lin-

guistic questions mimic the way humans solicit information
to actively learn about their environment. These questions
are also vital for obtaining labels when conventional label-
ing interfaces (mouse and screen) are not available 1.

The contributions of the paper are three-fold: (1) We in-
troduce a new criteria for active selection of labeling ques-
tions based on reduction in the joint entropy of all the re-
gions in the image (image entropy). By considering im-
age entropy as opposed to the entropy of individual re-
gions, we generate labeling questions which yield informa-
tion about the region not only whose label is solicited, but
other regions in the image as well. Experiments indicate
that this criteria outperforms two baseline approaches by a
wide margin. (2) We introduce linguistic questions in the
active learning framework. In such questions, high confi-
dence regions in the scene are used as anchors to pose ques-
tions about high entropy regions. (3) Finally, we introduce a
new active learning framework which not only prompts for
labels of regions but also poses questions about contextual
concepts. For example, as shown in figure 2, our approach
asks the annotator: “ What is the relationship between boat
and water? ”. By learning contextual concepts directly from
the annotator, we achieve reduction in global entropy over
the entire dataset. This leads to faster learning of appear-
ance models, as the concept can be applied throughout the
training dataset to obtain new training examples (fig. 2).

2. Related Work
There has been recent interest in utilizing humans as

resources for gathering visual recognition datasets[?, 1, 3,
1A typical example of this is an interaction between a robot and a hu-

man where robot asks questions to actively learn about the environment.



6, 7]. Some research has focused on generating human-
friendly interfaces for labeling [1] or keeping human inter-
est level high by formulating the labeling task as a game [7].
However, in most of these approaches the selection of re-
gions/images to be labeled is mostly random. In ma-
chine learning, active learning approaches [18, 19, 11, 10]
are used to rank unlabeled points based on classification
uncertainty- difficult examples are chosen for labeling. Cri-
teria for selection include heuristics based on the version
space of SVMs [10], disagreement among classifiers [11]
and expected informativeness [13, 12].

Early work on active learning in computer vision focused
on obtaining binary labels of isolated objects. In multi-class
scenarios, these approaches[14, 15, 16] extend the frame-
work by utilizing multiple binary 1-vs-all classifiers. These
approaches have two drawbacks: (1) They cannot compare
the uncertainty in prediction of an example for two different
binary subproblems, and hence cannot identify the classes
that require more training data. (2) They assume localized
object windows are available in the training dataset. These
methods are appropriate for prioritizing labeling of isolated
object datasets like CALTECH-256 [4], but would fail for
obtaining annotations where multiple objects occur in the
same image.

More recent approaches attempted to overcome these
two problems. Jain et. al [21] presented an approach for
multi-class active annotation utilizing a probabilistic vari-
ant of K-Nearest Neighbors. However, they still utilize ac-
tive learning for selection of images with isolated objects.
Settles et. al [20] present an active learning formulation
of multiple-instance learning, where localization of posi-
tive examples is not required. In a recent paper, Vijaya-
narasimhan et. al [22] present an active learning formula-
tion where multiple type questions can be used - one type of
question solicits location information by labeling of super-
pixels. However, they consider only binary classification
problems and not contextual interactions. Our work is also
related to [23] which exploits the same-class and different-
class membership relations between multiple data-points
for active learning. This framework [23], however, can-
not be extended easily to include spatial interactions (such
as above, below) and other relationships (such as bigger,
brighter) between data-points.

3. Problem Formulation
3.1. Contextual Object Recognition Model

Our contextual object recognition model is based on the
generative model used by Gupta and Davis [2]. In this ap-
proach, the authors represent contextual relationships be-
tween objects using constructs in language such as preposi-
tions and comparative adjectives. Object appearance mod-
els are based on features of a region and relationship models
are based on differential features.

We briefly describe the generative model (see figure 3(a))
and refer the readers to the paper[2] for details: Each im-
age is segmented into regions and each region is assumed
to be associated to a noun node. Every pair of noun nodes
is connected by a relationship edge. The relationship edge

provides the constraints on the type of relationships that can
exist between the nouns (based on priors learned from data
– for example, sun should occur above water). Relationship
edges also draw their likelihood from the differential fea-
tures extracted from the pair of regions. For an image I ,
let Ij be the region appearance features for the jth region
of the image, Rj , and Ijk be the differential features com-
puted between regions Rj and Rk. Then, the joint probabil-
ity P (n1, n2..|I) can be written as:

= P (n1, n2..|I1, I2..I12..CA, CR) (1)

∝
∏
i

P (Ii|ni, CA)
∏
(j,k)

∑
rjk

P (Ijk|rjk, CR)P (rjk|nj , nk)

where nj represents the noun associated with region Rj ,
rjk is the relationship between regions Rj , Rk while CA

and CR represent the parameters learned for noun and rela-
tionship models respectively.

The inference equation above consists of three terms: the
first term is the noun likelihood term, which reflects how
well the appearance of the regions matches the appearance
of the noun-classes. The second term is a relationship like-
lihood term which indicates how well differential features
match with relationship word models and the third term is
the prior which restricts the possible relationships between
pairs of noun-classes. Inference over this network is con-
ducted using belief propagation.
3.2. Active Learning

During active learning we pose one of the three types of
questions to the user, and utilize the user’s answer to update
the existing object recognition model. Our objective at each
stage, is to select the question, whose answer will lead to the
maximum improvement in the current recognition model.
The three types of questions are:
• Regional Labeling Question: This is the type of

question used in traditional active learning methods for
building visual classifiers. The user is simply asked
to provide the label of a selected region in an im-
age[Figure 2(a)].
• Linguistic Question: Motivated by the way humans

actively learn about new objects using additional lin-
guistic constructs, we propose a new type of active
learning question. In this question, regions linked to
“certain” concepts are used as anchors in the image to
pose questions about other regions. For example, in the
scenario shown in figure 2(b), a user is asked a ques-
tion such as “what is above the water?”, and is required
to list the objects in the image which satisfy the ques-
tion. The user simply answers “boat” and “tree” and
does not specify which regions correspond to which
objects in the answer.
• Contextual Question: The user is asked to provide the

possible relationships between a pair of object classes,
ni and nj . For each possible relationship the user also
specifies whether the objects are positively or nega-
tively related with respect to the relationship.



Compared to previous active learning methods [21, 23],
which proceed by determining the best region to label next,
our task is much more complex. We must identify both the
type of question to ask and select the most (potentially) in-
formative question from the set of possible questions of that
type. The size of the set of possible questions, especially the
linguistic questions, is much more larger than in traditional
active learning methods.

Many active learning approaches use uncer-
tainty/entropy as the criterion to choose the region to
label. The region with the highest entropy is chosen based
on the assumption that fixing its label would lead to maxi-
mum reduction in the overall entropy of the system. These
approaches, however, ignore the interactions between
different regions in the image and the information a label
provides about other regions in the image. In contrast, we
consider contextual interactions and formulate the selection
based on likely reduction of image entropy (entropy
based on all the regions of the image). For computational
reasons, we ignore the effect of fixing the label of a
region in an image on the other unlabeled images. Some
approaches [22] choose questions whose answers(labels)
are expected to minimize the uncertainty over the entire
unlabeled dataset. However, during each round of active
learning, they require evaluating the uncertainty on the
entire unlabeled dataset for each possible answer of every
question. This is impractical in the case of large multi-class
problems, more so in our case where the number of
possible questions is much higher than in traditional active
learning methods. In the following section, we describe the
information-theoretic measure, based on Shannon entropy,
to quantify information gain for a question.

3.2.1 Entropy of the system
Our training set consists of a set of images I, of which a
small subset IL is completely labeled, while the remaining,
much larger, subset IU , is unlabeled. We use IL to learn the
initial contextual object recognition model and then employ
our active learning framework to ask the user conventional
and linguistic questions about images from the unlabeled
subset IU along with contextual questions, while attempt-
ing to minimize the total entropy on IU (defined below).

Equation 1, gives the probabilities of all possible class
label assignments to the different regions of an image, while
taking into account the contextual relations between them.
We can use these probabilities to compute the joint entropy
of an image:

H(I) =
∑

(n1,n2..)∈N

−P (n1, n2..|I) log(P (n1, n2..|I)) (2)

Directly computing the joint entropy is impractical due
to its computational complexity, hence we need to approx-
imate it. An obvious approximation is the the first order
entropy, which is the sum of the entropies of each region
considered individually:

Hfo(I) =
∑
Ij∈I

∑
nj∈N

−P (nj |Ij) log(P (nj |Ij)) (3)

However, this completely ignores the contextual uncer-
tainty of the system. Hence we use the second order ap-
proximation of the joint entropy, which is a special case of
the Bethe entropy approximation [5], defined as:

Hso(I) =
∑

(Ij ,Ik)

∑
(nj ,nk)∈N

−P (nj , nk|Ij , Ik, Ijk) (4)

log(P (nj , nk|Ij , Ik, Ijk))− (m− 1)Hfo(I)

where m is the number of regions in the image I and
P (nj , nk|Ij , Ik, Ijk) denotes the pairwise probability of re-
gions Rj and Rk, which can be computed from Eqn. 1 as-
suming that the image contains only regions Rj and Rk.
The total entropy of the system Hso(IU ), is then defined
as the sum of the entropies of all the images, as they are
independent of each other.

Hso(IU ) =
∑

Ii∈IU

Hso(Ii) (5)

Based on this entropy measure, we define the importance
of a question as the reduction in the system entropy result-
ing from knowing the answer to that question. Therefore,
we compute the expected entropy reduction for each ques-
tion and choose the one leading to the maximum expected
reduction in entropy irrespective of its type. We now de-
scribe the method for computing the expected entropy re-
duction for each type of question and the procedure for up-
dating the current appearance and context models based on
the answer to each question.

Figure 3. (a) The graphical model used in [2]. (b) Linguistic Ques-
tions : An example of how certainty of some regions can be used
to pose questions.

3.2.2 Region Labeling Questions
In region labeling questions, an annotator is prompted for
the label of region Rj in image I . The expected reduction
in the entropy of the image can be written as the reduction in
entropy given that region Rj has the label c (and marginal-
izing over c). The reduction in entropy based on labeling
the region Rj in image I is thus:



∆Hso(I, Rj) =
∑
c∈C

P (Ij |c, CA)(Hso(I)−Hso(I|nj = c))

where Hso(I|nj = c) denotes the entropy of the image,
given that region Rj belongs to class c. After being labeled,
the new class likelihood of region Rj is simply:

P (Ij |nj) =

{
1 if nj = c
0 otherwise (6)

Substituting the new likelihood P (Ij |nj), in (4), we ob-
tain Hso(I|nj = c). Intuitively, it can be seen that in (4)
P (nj , nk|Ij , Ik, Ijk) = 0 ∀nj 6= c thereby decreasing the
number of possible states of the image, leading to a reduc-
tion in its entropy. As the other images are independent of
image I , ∆Hso(I,Rj) is also the total reduction in the sys-
tem entropy. When the user provides the label(c) of region
Rj , the corresponding features (Ij) are added to the train-
ing set and the appearance model of the class c is updated.
Relationship priors are also updated based on the labels ob-
tained.

3.2.3 Linguistic Questions
Linguistic questions utilize the high-confidence regions in
images and additional constructs (such as prepositions and
comparative adjectives) in the language to ask labeling
questions. For example, consider the image shown in fig-
ure 3(b). If one can recognize with certainty that region R3

is water, then using this region as an anchor, questions such
as “what is above water ?” or “what is brighter than water?”
can be posed.

We need to estimate the expected change in entropy for
questions of the form: “What objects obey relationship rk
with respect to object Ac ?”( Expressed as q = (rk, Ac)).
The answer given by the user to this question is the list of
classes Cq that satisfy the relationships. Let the regions
that satisfy the relationship rk w.r.t object class Ac in the
image be represented by Rq (For example in fig.3(b), if
q = (above, water) then Rq = {R4, R5} since region
R3 is water). The entropy of the system is reduced since
regions (Rq) have a higher likelihood of belonging to the
classes listed in Cq . The new joint probability of the of the
image is given by

P (n1, n2....|I, Cq) =
∑
Rq

P (n1, n2....|I, nRq ∈ Cq)P (Rq|I)

(7)

To compute P (n1, n2....|I, nRq
∈ Cq), we modify

the likelihood of the regions R ∈ Rq and recompute
P (n1, n2....|I) using equation 1. The new likelihoods are
given by

P (Ij |nj , CA) =

{
0 if c 6∈ Cq;

P (Ij |nj ,CA)∑
c∈Cq

P (Ij |nj=c,CA)
if c ∈ Cq (8)

We also need to compute P (Rq|I). The set of regions
that satisfy relationship rk with anchor concept Ac in the
image depends on the location of the anchor region RAc

and the regions which satisfy relation rk with the anchor
region. Therefore, we can write it as:

P (Rq|I) =
∑
RAc

P (Rq|rk, RAc)P (IRAc
|Ac, CA) (9)

The new pairwise probabilities, P (nj , nk|Ij , Ik, Ijk, Cq)
can be similarly computed. For a given answer Cq , the en-
tropy reduction is computed as:

∆Hso(q, Cq) = Hso(I)−Hso(I|nRq ∈ Cq) (10)

where Hso(I|nRq
∈ Cq) denotes the new entropy of the

image, which can be computed by substituting the new pair-
wise probabilities and the new likelihoods.

The entropy reduction computed above depends on the
answer, Cq , to the question. However, at the time of selec-
tion the answer is not known. One could compute the en-
tropy reduction for all possible sets of classes which could
be the answer to the question and compute the expected en-
tropy reduction as:

∆Hso(q) =
∑

Cq∈Pr(C)

P (Cq|I)∆Hso(q, Cq) (11)

where Pr(C) is the power set consisting of all possible
combinations of classes. This clearly is prohibitively ex-
pensive due to the large number of possible answers. There-
fore, we employ importance sampling, where Cq is sampled
based on the joint probability distribution computed from
the current model.

The user answers a linguistic question by providing the
list of class-labels Cq corresponding to the set of relevant
regions. We can then compute the set of revised class prob-
abilities for possible relevant regions, and then infer the
classes of the regions. On obtaining the class assignments
of the regions, we update the the appearance models of the
corresponding classes by adding the regions to the training
set. We also update the relationship priors P (rk|ni, nj) for
the object pairs from the regions Rq and any other previ-
ously labeled regions in the image. Thus, linguistic ques-
tions, help in improving both the visual as well as the con-
textual components of our object recognition model.

3.2.4 Contextual Questions
In contextual questions, the annotator is asked for the rela-
tionships between a pair of object classes ni and nj , and he
provides a list of possible relationships and whether these
relationships occur “always” or “never”. For example, if an
annotator is asked : “ List Relationship between sky and sea
” then he can answer: “sky always occurs above sea and sky
never occurs below sea”.

For an object-object-relationship triplet the expected re-
duction in entropy can be obtained as:



∆Hso(rk, ni, nj) = max

 Hso(IU )−Hso,highijk
(IU )

Hso(IU )−Hso,lowijk
(IU )

0

where Hso(IU ) denotes the entropy of the system accord-
ing to the current model, given by Eqn. 5. Hso,highijk

(IU )
denotes the system entropy under the assumption that the
relation rk positively holds between the object pair (ni, nj),
which can be estimated by computing the system entropy
with a modified contextual model where the relationship
prior P (rk|ni, nj) is set to high. Similarly Hso,lowijk

(IU )
is the system entropy assuming that the relation rk nega-
tively holds between (ni, nj), and is obtained by comput-
ing the system entropy with P (rk|ni, nj) set to low. Here
the assumption is that, if the current relationship priors do
not accurately model a strong relationship(or the lack of
it) between a pair of object classes, then correcting the re-
lationship priors should result in a large reduction in the
system entropy. Additionally, the entropy reduction will
be relatively larger in the case of highly co-occurring ob-
ject pairs, thereby favoring contextual questions on highly
co-occurring pairs whose relationship priors are inaccurate.
There can exist more than one strong relationship between
an object pair, and representing each of them in the contex-
tual model is important. Hence, we define the total expected
entropy reduction of an object-pair as the sum of the entropy
reductions due to all the individual relationships:

∆Hso(ni, nj) =
∑

rk∈Rel

∆Hso(rk, ni, nj) (12)

Computing the entropy reduction, for all pairs of object
classes over the entire unlabeled dataset is, again, compu-
tationally expensive. To reduce the computational cost, we
compute ∆Hso(ni, nj) only from images in which the ob-
ject pair (ni, nj) is expected to have a high joint likelihood.
The joint likelihood in each image is determined from the
current recognition model. The complexity can be further
reduced by restricting the entropy reduction computation to
only highly co-occurring object-class pairs.

On obtaining the relationship labeling for the pair
(ni, nj), the model is updated by setting the the positive re-
lationship priors P (rjk1|ni, nj)..P (rjkc|ni, nj), to a high
value and the negative relationship priors to a low value.

4. Experimental Results
Implementation : Our appearance likelihoods are based

on the approach in [21], which is a probabilistic variant of
the K-nearest neighbor classifier, to model the likelihood of
nouns. The relationship likelihood is modeled using a deci-
sion stump similar to [2]. Region and differential features
used in the paper are the same as those used in [2]. The re-
gion features consist of color(mean rgb, mean hsv, hue and
saturation histograms), texture(texture response and texture
histograms) and location/shape(mean x-y locations, area),
while the differential features are extracted from pairs of re-
gions - for example, difference in brightness of two regions.

Our relationship vocabulary consists of above, below, left,
right, more blue, more green, brighter, which is a subset of
the vocabulary used in [2], containing the most relevant con-
textual relationships. For segmentation, we use the SWA
algorithm [24] and perform stability analysis for estimating
the stable segmentation level [25]. In all the experiments,
the role of annotator is played by an Oracle which utilizes
ground truth to obtain the answer to the questions.

We now present experimental results to demonstrate the
effectiveness of our active learning framework. We present
a detailed experimental analysis of our approach on the
MSRC dataset, along with additional results on the recently
introduced Stanford dataset [8]. For evaluation, we compare
our active learning framework to simple random sampling
of questions and a state-of-the-art active learning method
introduced in [21]. Both these baselines utilize only region
labeling questions.

4.1. MSRC Dataset
We first show the performance of our approach on the

standard MSRC dataset which consists of 532 images con-
taining objects from 21 different categories. We use the
standard training and test splits [9], consisting of 276 train-
ing images and 256 test images 2.

Ground Truth Segmentations: We first evaluate the
performance of our approach under perfect segmentation
by utilizing the ground-truth segmentations provided with
the dataset. By isolating the errors due to segmentation,
we can better understand the behavior of our active learning
framework. A set of 34 fully-annotated images is chosen
from the training set, such that each object category has at
least 2 instances, is used for building the initial model. Ac-
tive learning is then used to improve the model by asking
the Oracle the three types of questions and using the re-
sponse for updating the current model. Figure 4 shows the
accuracy(region-level labels) of the different methods as a
function of the number of questions answered, starting from
the initial model.

It is clear from Figure 4 that our combined active learn-
ing framework is significantly better than the other meth-
ods. After 40 questions, our combined method has at-least
a 14% improvement over all the other methods. As seen
in the figure, utilizing a framework with different types of
questions allows selection of the question-type which max-
imizes the entropy reduction. Therefore, initially our sys-
tem asks contextual questions, since they reduce the entropy
the fastest. This is generally followed by region labeling
questions, which help in improving the appearance mod-
els. Once we have reasonably good appearance and context
models, our system is able to find anchors to pose linguistic
questions. The figure also shows the importance of utilizing
image entropy over region entropy (Compare Region label-
ing curve to [21]). Utilizing the region labeling questions
alone, our criteria outperforms both the selection criteria

2The generative model used in the paper yields 72% recognition rate
when trained using the perfect segmentations and the entire training set.
This rate is comparable to state of the art approaches
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Figure 4. Performance on MSRC dataset when we utilize the
ground truth segmentations of the images.

proposed in [21] and random selection, both of which are
based only on region labeling questions. Note that, after a
point none of the remaining contextual questions reduce the
system entropy, hence the corresponding curve terminates
earlier. Another interesting observation is that, as the num-
ber of unlabeled regions decreases the performance gain de-
creases (due to non-availability of informative questions).

Figure 5(a) shows some qualitative examples of ques-
tions asked by our active learning framework. It can be
seen how our system utilizes high confidence regions as-
sociated with grass, sky, ground to pose questions about
other regions. Contextual questions asked by the system
are also very important and relevant for recognition. Fig-
ure 5(b) shows some qualitative examples of improvement
in selection by our framework. For example, [20] often se-
lects regions from images where an object(face) occurs in
isolation, based on the classification uncertainty of the re-
gion, for learning the appearance model. In contrast, our
system selects regions(face) from images where other re-
lated regions(body) are also present, as fixing the label of
those regions also provides information about the other la-
bels. Another example of better selection is that while [21]
selects regions such as sky to be labeled (in case of high
uncertainty), our approach prefers to ask question or solicit
labels about other regions in the image such as house. Fix-
ing the house label also provides information about the re-
gion above. Since only tree or sky can occur above a house,
the likelihood of confusing those regions with other objects
decreases. Whereas fixing the sky label provides very less
information about other regions in the image, as most ob-
jects generally occur below the sky.

Imperfect Segmentations: In this case we use a set of
50 fully-annotated images for the initial training and active
learning is performed as described above. However, here
the regions correspond to segments that are automatically
generated by the segmentation algorithm and this directly
influences the region labeling and the linguistic questions
that are selected. The evaluation of the test images is also
performed based on the automatically generated segments.
Figure 6 shows the accuracy of each method versus the
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Figure 6. Performance on MSRC dataset using imperfect segmen-
tations.

number of questions answered. Here, again, it is clear that
our method performs better than the other approaches. In
case of imperfect segmentation the rate of increase of per-
formance is slower. This is because ground-truth labels are
provided only when the overlap between the segmentation
and ground truth region is high; otherwise the Oracle does
not provide any answer to the question. In our experiments
we found that approximately half of the regions were left
unlabeled by the Oracle due to this reason. Furthermore, in
case of imperfect segmentation the performance of linguis-
tic questions saturates earlier. This is partly because of the
poor performance of linguistic questions at the later stages
when only the images without candidate anchor regions re-
main (poorly segmented images).
4.2. Stanford Dataset

We also evaluate our approach on the Stanford
dataset [8], which has been compiled from several already
existing datasets and has accurate annotations collected us-
ing Amazon Mechanical Turk. It consists of 715 images,
consisting of objects from 8 different categories. The im-
ages are randomly divided into a training set containing
415 images and a test set consisting of the remaining 300
images. A set of 8 images chosen from the training set,
is used for building the initial model and active learning
is employed for incrementally improving it. We consider
only the top five regions(by area) in each image for both
training as well as evaluation purposes. Figure 7 shows
the accuracy(region-level labels) versus the number of ques-
tions, for each of the different methods. This dataset has 8
classes and therefore the initial context priors are very simi-
lar to final context priors and therefore contextual questions
are not very helpful. However, due to good initial recog-
nition rate our system finds anchors for linguistic questions
more frequently and therefore linguistic questions outper-
form region labeling questions

Conclusion: We have presented an active learning
framework that utilizes contextual interactions between re-
gions in an image for selecting the regions to be la-
beled. Our criteria prefers regions which have high entropy
and provide information about other regions in the image



Figure 5. (a) A few examples of region labeling and linguistic questions posed by our framework in MSRC dataset with ground truth
segmentations. Contextual questions posed by the system include: (1) What is relationship between grass and cow ? (2) What is relationship
between sky and grass ? (3) What is relationship between tree and grass ? (b) Qualitative improvement in selection of questions.
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Figure 7. Performance of our system on Stanford dataset using
ground truth segmentations.

through contextual interactions. We present linguistic ques-
tions which utilize high confidence regions as anchors and
additional constructs in language (prepositions, compara-
tive adjectives) to pose questions about uncertain regions.
In future, we plan to explore the usage of language ontolo-
gies for linguistic question based active learning and how to
extend it for videos using temporal prepositions [17].
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