Beyond Active Noun Tagging

Behjat Siddiquie

behjat@cs.umd.edu

Abhinav Gupta

abhinavg@cs.cmu.edu

Problem: Active Learning for Scene Understanding Tasks

Image Entropy

Introduce new ways of collecting knowledge which go beyond labeling regions

Introduce new ways of collecting knowledge which go beyond labeling regions

Linguistic Questions

> Use high confidence detections as anchors to ask questions about the unknown objects in a scene

Introduce new ways of collecting knowledge which go beyond labeling regions

Linguistic Questions

Use high confidence detections as anchors to ask questions about the unknown objects in a scene

Introduce new ways of collecting knowledge which go beyond labeling regions

Linguistic Questions

Use high confidence detections as anchors to ask questions about the unknown objects in a scene

Introduce new ways of collecting knowledge which go beyond labeling regions

Contextual Questions

Importance of relationships

Introduce new ways of collecting knowledge which go beyond labeling regions

Contextual Questions

Importance of relationships

- Learn general contextual relationships
- directly from the annotator

Introduction

Scene Understanding

- \succ Learn O(n) appearance models
- \succ Learn $O(n^2)$ relationship models

Heavy Tailed Distribution

- The large majority of classes occur rarely
- Holds for relationships too

Randomly annotating training data is extremely inefficient

Active Learning

Active Learning

Active Learning

Binary Classification Problems

SVMs, Tong & Koller, 2001

Active Learning : Multi-Class

Binary Classification Problems → SVMs, Tong & Koller, 2001

Multi-Class Classification Problems

Jain & Kapoor, 2009

Caltech 101/256

Active Learning : Scene Understanding

Binary Classification Problems → SVMs, Tong & Koller, 2001

Multi-Class Classification Problems

Jain & Kapoor, 2009

Active Learning for Scene Understanding

Uncertainty Based Approaches

Uncertainty Based Approaches

Entropy over all possible label assignments

Second order approximation

Sum of the joint entropies of all pairs of regions

Active Learning Framework

Training Data

Active Learning Framework

Training Data

Types of Questions

Region Labeling Questions

Linguistic Questions

What is the relationship

between boat and water?

Contextual Questions

Types of Questions

Region Labeling Questions

What is the relationship between boat and water?

Appearance Model

Appearance Model

Importance of a Question

Initial Image Entropy

Final expected Image Entropy given labeling

Types of Questions

Linguistic Questions

What is the relationship between boat and water?

Appearance Model

Contextual Model

Appearance Model

Contextual Model

Appearance Model

What is above the water?

Appearance Model

Linguistic Questions

Appearance Model

Linguistic Questions

Linguistic Questions: Expected Entropy Reduction

What is **below** the **sky**?

Linguistic Questions: Expected Entropy Reduction

What is **below** the **sky**?

Linguistic Questions: Expected Entropy Reduction

What is **below** the **sky**?

Entropy Reduction

Expected Image Entropy given a weak labeling \mathcal{C}_q of the relevant regions

Types of Questions

What is the relationship between boat and water?

Contextual Questions

Contextual Questions

Appearance Model

Contextual Model

Contextual Questions

Appearance Model

Contextual Model

What is the relationship between boat and water?

Contextual Questions

Appearance Model

Appearance Model

Contextual Questions: Expected Entropy Reduction

Correct Relationship Prior

- > Constrains the image labeling problem
- Results in a large entropy reduction

Sample object pairs based on their co-occurrence

Experiments

MSRC Dataset

- > 532 images (276 training, 256 test)
- > 21 categories and multi-label images

Ground Truth Segmentations

Region Labeling Questions

Our Approach (Image Entropy)

Region Labeling Questions

Our Approach (Image Entropy)

Region Labeling Questions

Our Approach (Image Entropy)

Region Labeling Questions

Our Approach (Image Entropy)

Linguistic Questions

What is above the ground?

What is above the grass?

What is more blue than the ground?

Contextual Questions

building-tree
cow-grass
tree-ground
sky-building
sky-tree
grass-building
sky-grass
tree-grass
boat-water

Experiments

MSRC Dataset

- 532 images (276 training, 256 test)
- 21 categories and multi-label images

Automatic Segmentations

Experiments: Stanford Dataset

Stanford Dataset

- 715 images (415 training, 300 test)
- Annotated using Amazon Mechanical Turk
- 8 categories and multi-label images

Results: Stanford Dataset

Results: Stanford Dataset

Results: Stanford Dataset

Summary

Active learning method for learning contextual object recognition models

Image Entropy

Linguistic Questions

Contextual Questions

Questions?

Please visit our poster located at B4