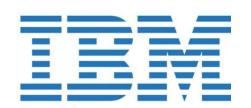
Image Ranking and Retrieval based on Multi-Attribute Queries

Behjat Siddiquie behjat@cs.umd.edu

Rogerio S. Feris rsferis@us.ibm.com



Larry S. Davis Isd@cs.umd.edu

Attribute based Image Retrieval

"Young Asian woman wearing sunglasses"

Attribute based Image Retrieval

"Young Asian woman wearing sunglasses"

Attributes

Physical traits or characteristics of a person

Male Asian Middle-Aged

Female White Young

Attributes

Physical traits or characteristics of a person

Male Asian Middle-Aged

Female White Young

Object Properties

Round White Black

Attributes

Physical traits or characteristics of a person

Male Asian Middle-Aged

Female White Young

Object Properties

Round White Black

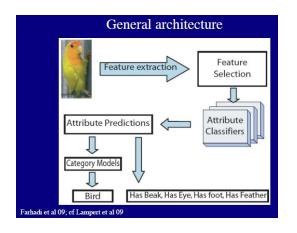
Object properties that span across object categories

Striped
Four-legged
Orange
Black

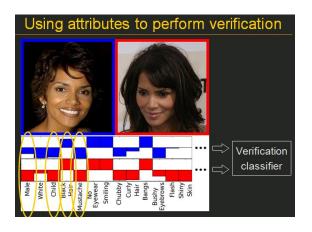
Striped Four-legged White Black

Attribute based representation

Describing Images Farhadi et al., CVPR 2009

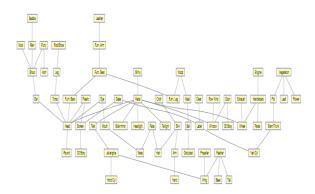


Face Verification
Kumar et al., ICCV 2009

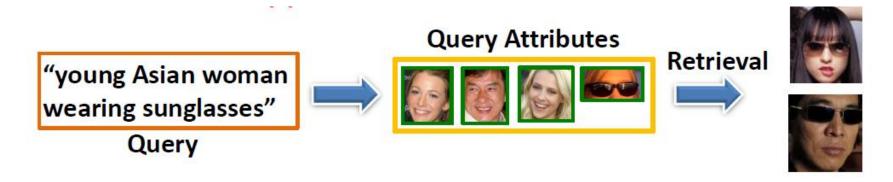


Transfer Learning Lampert et al., CVPR 2009

Object Recognition
Yang and Mori, ECCV 2010



Identifying Outliers Farhadi et al., CVPR 2009



Number of possible queries is exponential

Existing Approaches

- Train independent classifiers for each attribute
- Sum up confidence scores

"young Asian woman wearing sunglasses" Query

Query Attributes

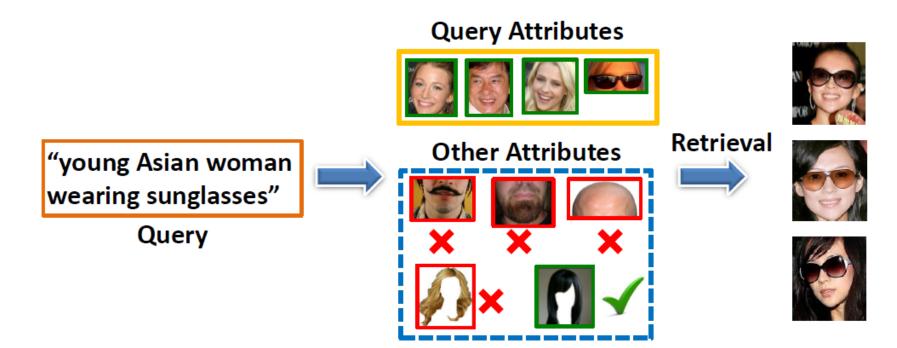
Retrieval

Query Attributes

"young Asian woman wearing sunglasses"

Query

Other Attributes



Model Correlations between Attributes

Explicitly utilize information from non-query attributes

Joint Ranking and Retrieval Framework

• Retrieval: Set of images

Ranking: Ordered set of images

Multi-Attribute Image Ranking/Retrieval

We are given:

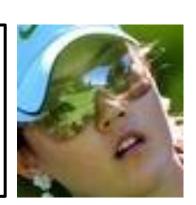
An attribute vocabulary

$$\mathcal{X} = \{x_1, x_2, \dots, x_K\}$$

$$\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$$

Multi-label annotation for each image

Hat
Sunglasses
Female
Asian
Young



Multi-Attribute Image Ranking/Retrieval

We are given:

An attribute vocabulary

$$\mathcal{X} = \{x_1, x_2, \dots, x_K\}$$

$$\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$$

Multi-label annotation for each image

Hat Sunglasses Female Asian Young

Our goal is:

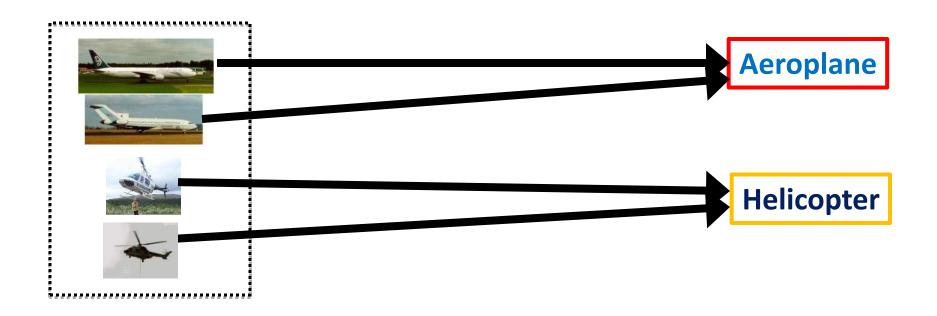
- ullet For a multi-label query ${\mathcal Q}$, where ${\mathcal Q}\subset {\mathcal X}$
- Rank/Retrieve relevant images from a dataset

Retrieval: Reverse Learning

- Reverse Multi-label Learning, Petterson and Caetano, NIPS 2010
- ullet Given a label x_i such that $x_i \in \mathcal{X}$
- ullet Predict the set of instances $y(\subset \mathcal{Y})$ that containing the label x_i

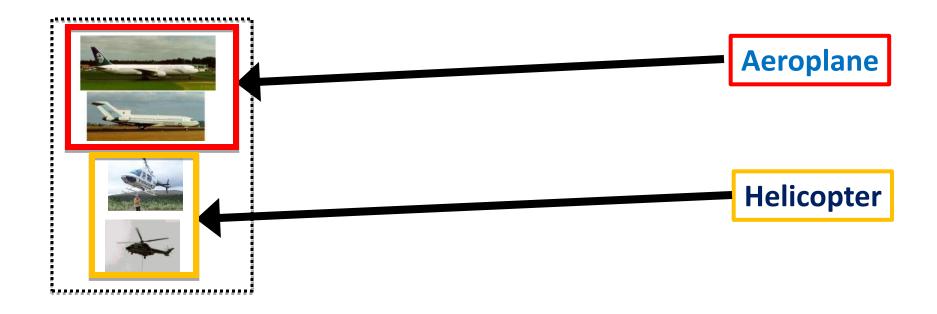
Retrieval: Conventional Learning

Conventional Learning



Retrieval: Reverse Learning

- ullet Given a label x_i such that $x_i \in \mathcal{X}$
- ullet Predict the set of instances $y(\subset \mathcal{Y})$ that containing the label x_i



Enables minimization of training loss based on a variety of metrics

Given multi-attribute query $\mathcal Q$, output set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

Given multi-attribute query $\mathcal Q$, output set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

where
$$w^T \psi(\mathcal{Q}, y) = \sum w_i^a \Phi_a($$

$$w^{T}\psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Given multi-attribute query $\mathcal Q$, retrieve set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

where
$$w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Asian woman wearing Sunglasses

Given multi-attribute query $\mathcal Q$, retrieve set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

where
$$w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Given multi-attribute query \mathcal{Q} , retrieve set of relevant images \mathcal{Y}

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

$$w^{T}\psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Given multi-attribute query Q, retrieve set of relevant images Y

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

where
$$w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

$$\Phi_a(x_i, y) = \sum_{y_k \in y} \phi_a(x_i, y_k)$$

Asian woman wearing Sunglasses

Given multi-attribute query $\mathcal Q$, retrieve set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

$$\text{where} \quad w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

$$\Phi_a(x_i, y) = \sum_{y_k \in y} \phi_a(x_i, y_k)$$

Asian woman wearing Sunglasses

Given multi-attribute query $\mathcal Q$, retrieve set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

$$\text{ where } \quad w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Asian + woman + wearing Sunglasses

Given multi-attribute query $\mathcal Q$, retrieve set of relevant images $\mathcal Y$

Learn
$$w$$
 such that $y^* = \arg\max_{y \in \mathcal{Y}} w^T \psi(\mathcal{Q}, y)$

$$\text{where} \quad w^T \psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

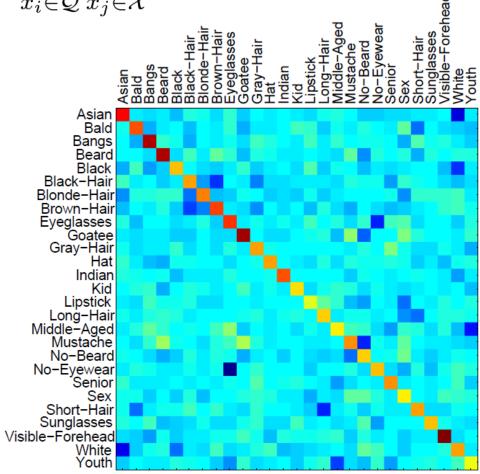
Asian . Blonde hair

Asian . Gray hair

Asian . Black hair

Weights Learnt

$$w^{T}\psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$



Weights Learnt

Asian

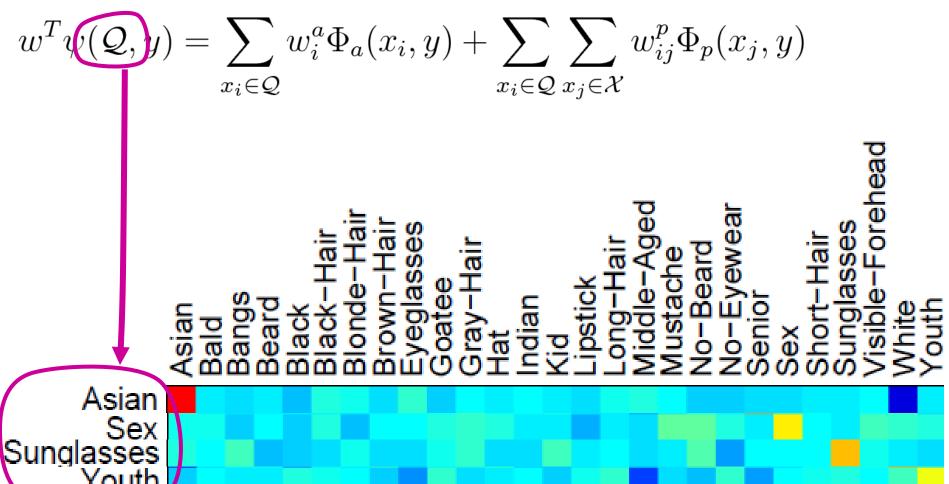
$$w^{T}\psi(\mathcal{Q}, y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i, y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \Phi_p(x_j, y)$$

Asian
Bald
Bangs
Bangs
Black
Black
Black
Blonde-Hair
Blonde-Hair
Brown-Hair
Brown-Hair
Coatee
Gray-Hair
Hat
Indian
Kid
Long-Hair
Kid
No-Beard
No-Beard
No-Eyewear
Senior
Sex
Sunglasses

Weights Learnt

$$w^T\psi(\mathcal{Q},y) = \sum_{x_i \in \mathcal{Q}} w_i^a \Phi_a(x_i,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^b \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^b \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^b \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^b \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^b \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_i \Phi_p(x_j,y) + \sum_{x_i \in \mathcal{Q}} w_i \Phi_p(x_i,y) + \sum_{x_i \in \mathcal{Q}} w_i \Phi_p(x_i,y) + \sum_{x_i \in \mathcal{Q}} w_i \Phi_p$$

Weights Learnt



Retrieval: Training

Training

Retrieval: Training

Training

loss function

$$\Delta(y^*, y) = \begin{cases} 1 - \frac{y \cap y^*}{y} & \text{precision} \\ 1 - \frac{y \cap y^*}{y^*} & \text{recall} \\ 1 - \frac{y \cap y^* + \bar{y} \cap \bar{y}^*}{\mathcal{Y}} & \text{hamming loss} \end{cases}$$

Ranking

Given a query $\mathcal Q$, rank documents in order of relevance

Output is an ordered set (permutation)

Ranking

Given a query $\mathcal Q$, rank documents in order of relevance

Output is an ordered set (permutation)

Ranking

Given a query Q, rank documents in order of relevance

Output is an ordered set (permutation)

Large Scale Datasets

Ranking more important than retrieval

Ranking: Formulation

Given a multi-attribute query \mathcal{Q} , generate permutation of images z

Learn
$$w$$
 such that $z^* = \arg \max_{z \in \pi(\mathcal{Y})} w^T \psi(\mathcal{Q}, z)$

where
$$w^T \psi(\mathcal{Q}, z) = \sum_{x_i \in \mathcal{Q}} w_i^a \hat{\Phi}_a(x_i, z) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \hat{\Phi}_p(x_j, z)$$

$$\hat{\Phi}_a(x_i, z) = \sum_{z_k \in z} A(r(z_k)) \phi_a(x_i, z_k)$$

$$\hat{\Phi}_p(x_j, z) = \sum_{z_k \in z} A(r(z_k)) \phi_p(x_j, z_k)$$

Ranking: Formulation

Given a multi-attribute query $\mathcal Q$, generate permutation of images z

Learn
$$w$$
 such that $z^* = \arg \max_{z \in \pi(\mathcal{Y})} w^T \psi(\mathcal{Q}, z)$

where
$$w^T \psi(\mathcal{Q}, z) = \sum_{x_i \in \mathcal{Q}} w_i^a \hat{\Phi}_a(x_i, z) + \sum_{x_i \in \mathcal{Q}} \sum_{x_j \in \mathcal{X}} w_{ij}^p \hat{\Phi}_p(x_j, z)$$

$$\hat{\Phi}_a(x_i, z) = \sum_{z_k \in z} A(r(z_k)) \phi_a(x_i, z_k)$$

$$\hat{\Phi}_p(x_j, z) = \sum_{z_j \in z} A(r(z_k)) \phi_p(x_j, z_k)$$

Training
$$\underset{w,\xi}{\arg\min}$$

$$w^T w + C \sum_t \xi_t$$

$$\forall \ t \ w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \geq \Delta(z_t^*, z_t) - \xi_t$$

Training
$$\arg\min_{x \in S}$$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

Training
$$\arg\min_{x\in S}$$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Training $\arg\min_{x \in \mathcal{E}}$

$$w^T w + C \sum_t \xi_t$$

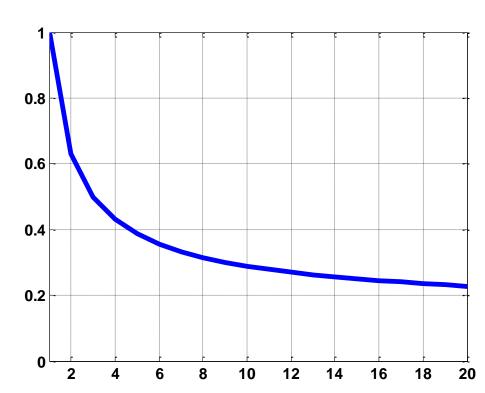
$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$



Training
$$\arg\min_{x \in S}$$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^k \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Training
$$arg min$$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

3

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Training arg min

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

3

2

Training arg min

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Training $\arg\min_{x \in \mathcal{E}}$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Asian + woman + wearing Sunglasses

Strong Attributes

- Race
- Age
- Gender

Weak Attributes

- Hair Color
- Hair Style
- Facial Hair
- Eyewear

Training
$$\arg\min_{x \in \mathcal{X}}$$

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

Training arg min

$$w^T w + C \sum_t \xi_t$$

$$\forall t \quad w^T \psi(\mathcal{Q}_t, z_t^*) - w^T \psi(\mathcal{Q}_t, z_t) \ge \Delta(z_t^*, z_t) - \xi_t$$

loss function

$$\Delta(z^*, z) = 1 - \text{NDCG}_k(z^*, z)$$

where

$$NDCG_k = \frac{1}{Z} \sum_{j=1}^{k} \frac{2^{\text{rel}(j)} - 1}{\log(1+j)}$$

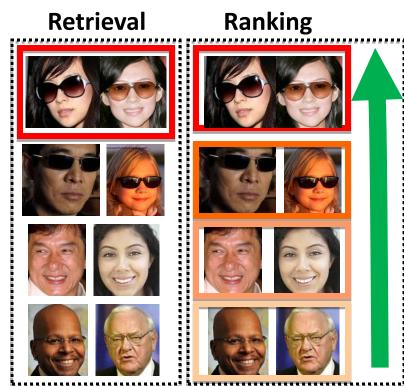
Multi-Attribute Ranking and Retrieval

Ranking and Retrieval

• Typically treated as separate problems

Structured Formulation

 Optimize the same model according to different performance measures



Labeled Faces in the Wild(LFW) Dataset

Attribute Annotation

- 9992 images
- 27 attributes

LFW Dataset: Attributes

Race

- Asian
- Black
- White
- Indian

Age

- Kid
- Youth
- Middle-Aged
- Senior

Gender

Sex

Other

- Hat
- Lipstick
- Visible Forehead

Hair Color

- Black Hair
- Blonde Hair
- Brown Hair
- Gray Hair

Hairstyle

- Long Hair
- Short Hair
- Bangs
- Bald

Facial Hair

- Mustache
- Beard
- Goatee
- No Beard

Eyewear

- Sunglasses
- Eyeglasses
- No Eyewear

LFW Dataset: Feature Extraction

Features

Color

- Color Histograms
- Color Correlograms
- Color Moments
- Color Wavelet

Texture

- Wavelet Texture
- LBP Histogram
- LBP PCA

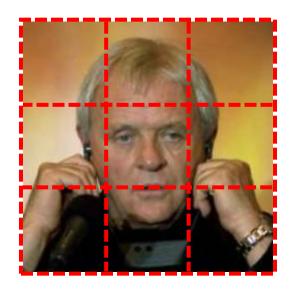
Skin Information

- Skin Bitmap
- Skin Color
- Spatial Skin

Shape

- Edge Histogram
- Shape Moments
- SIFTogram

Features: Spatial Configurations



Center

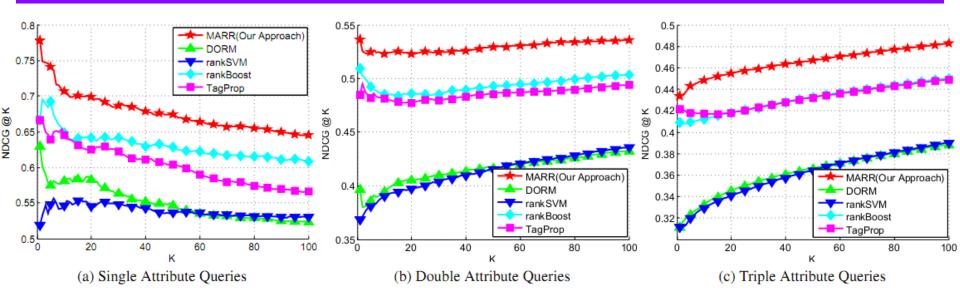
Global

Horizontal Parts

Vertical Parts

Layout

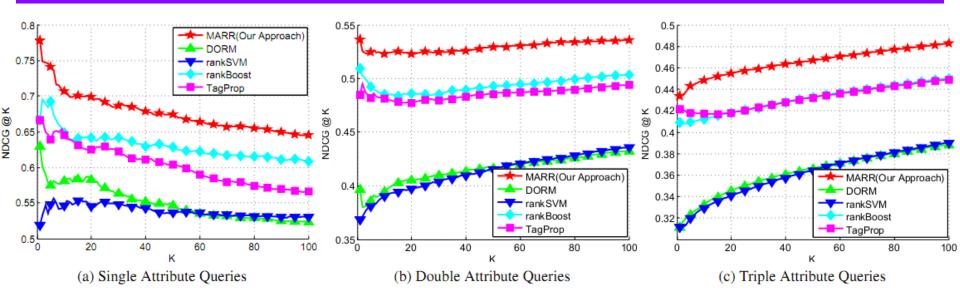
LFW Dataset: Quantitative Results



Ranking

- > Baselines
 - RankSVM (T. Joachims, KDD 2002)
 - RankBoost (Y. Freund, I. Iyer, R. Schapire, Y. Singer, JMLR 2003)
 - DORM (Q. Li, A. Smola, NIPS workshop 2008)
 - TagProp (M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, ICCV 2009)
- > NDCG@K

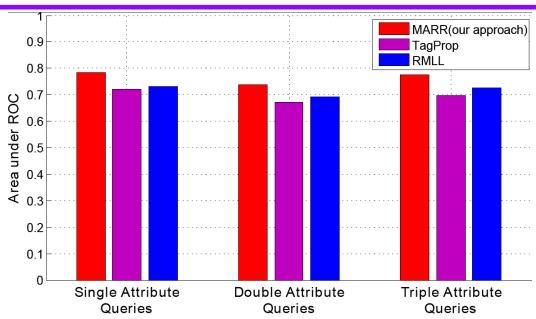
LFW Dataset: Quantitative Results



Results

- > rankBoost is the 2nd best
- > Performance gain
 - Single Attribute Queries: 8.9% improvement in NDCG@10
 - Double Attribute Queries: 7.7% improvement in NDCG@10
 - Triple Attribute Queries: 8.8% improvement in NDCG@10

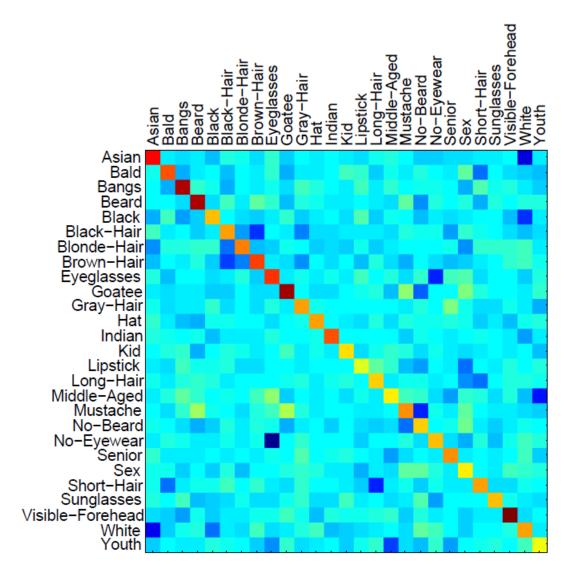
LFW Dataset: Quantitative Results

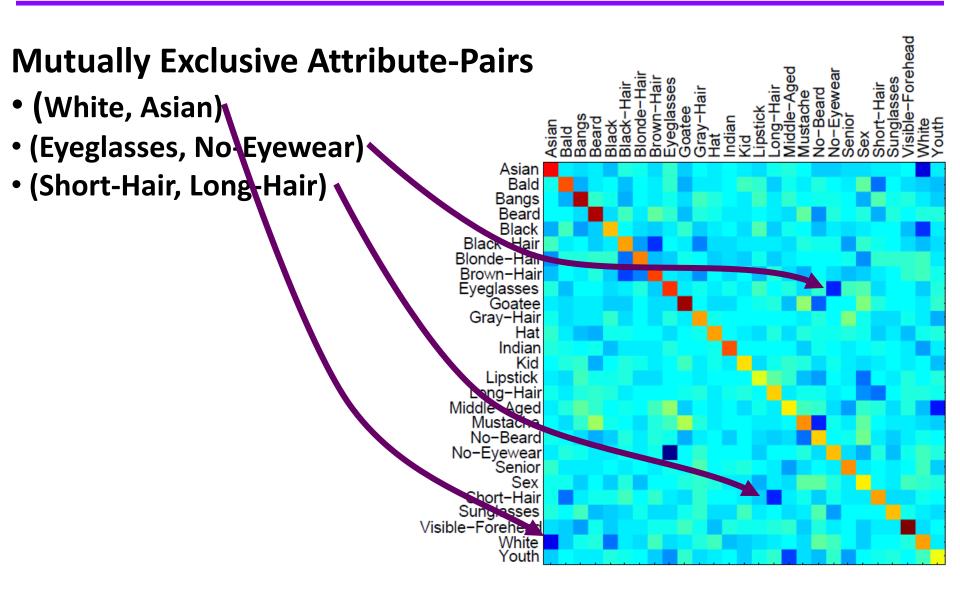


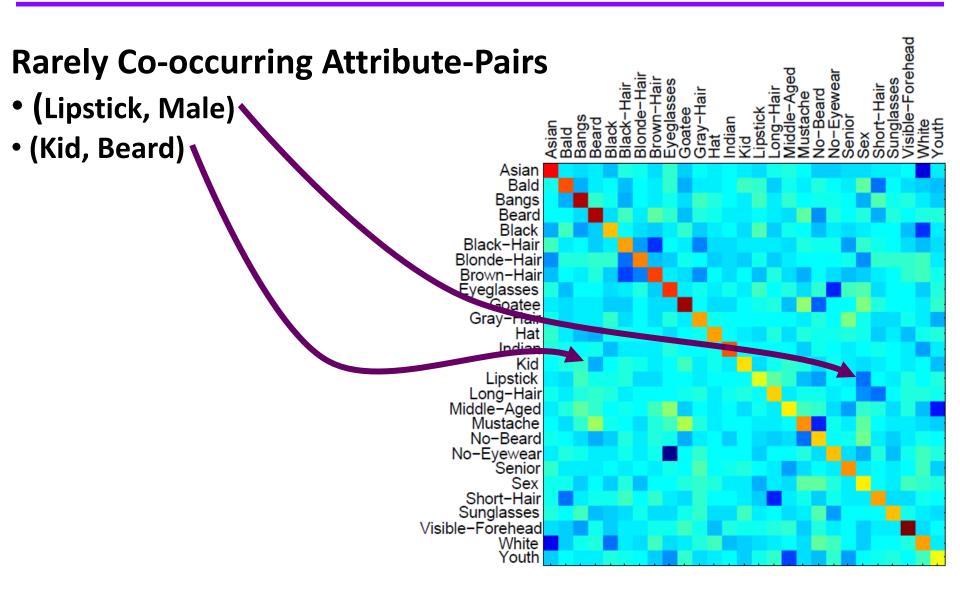
Retrieval

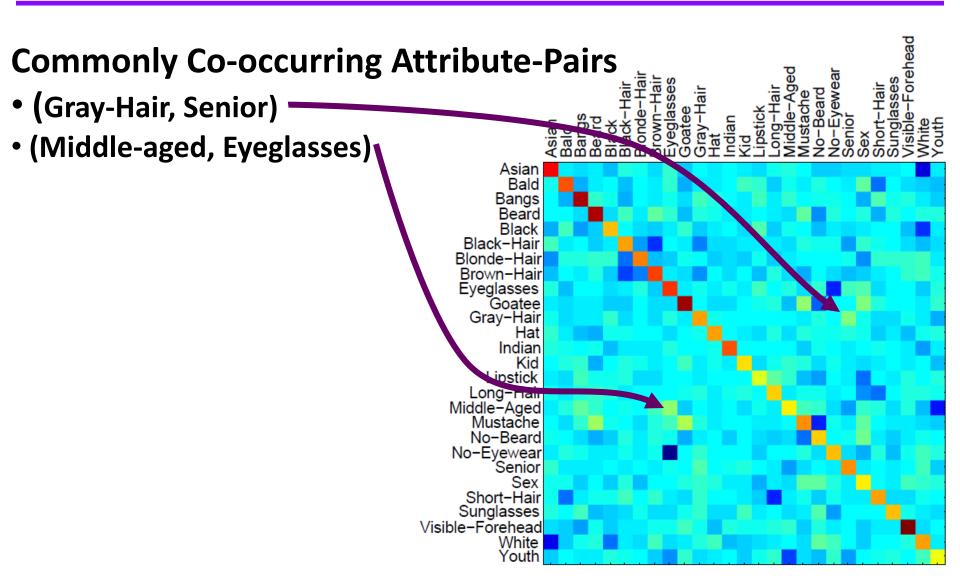
- Baselines
 - Reverse Multi-Label Learning, (J. Petterson and T. Caetano, NIPS 2010)
 - TagProp, (M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, ICCV 2009)
- mean Area under ROC
- Performance gain
 - ~5% w.r.t. RMLL
 - ~7% w.r.t. TagProp

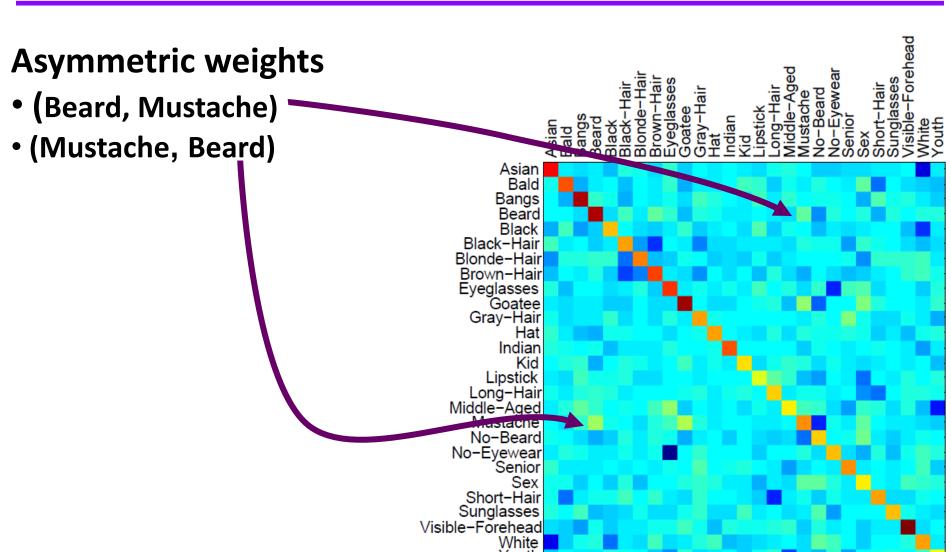
Weights Learnt



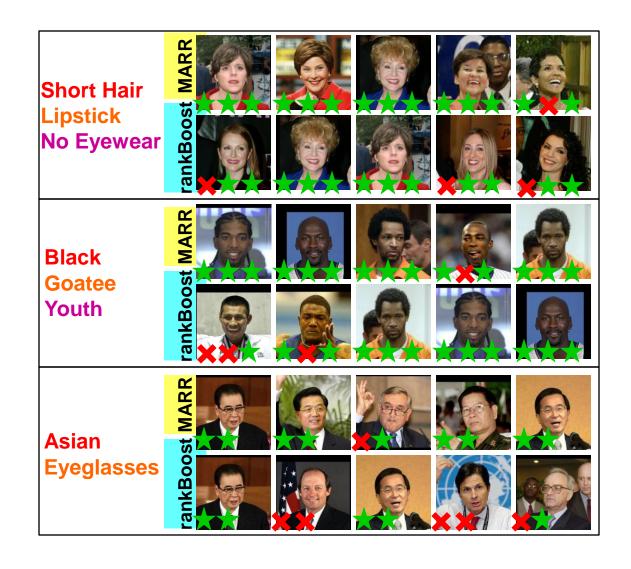




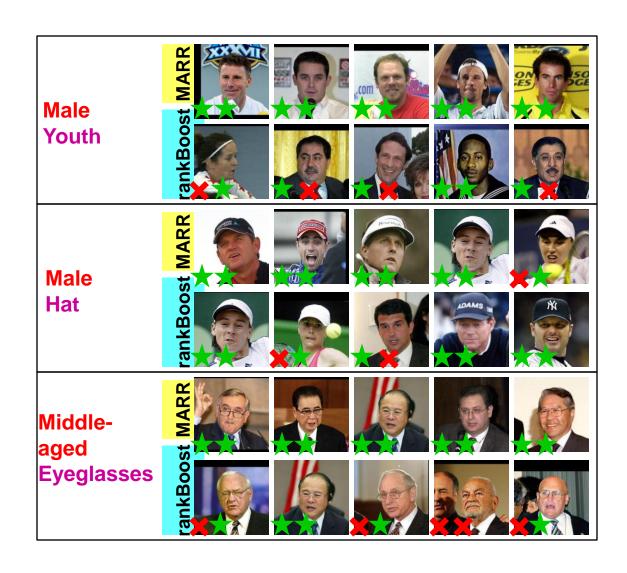




LFW Dataset: Qualitative Results



LFW Dataset: Qualitative Results



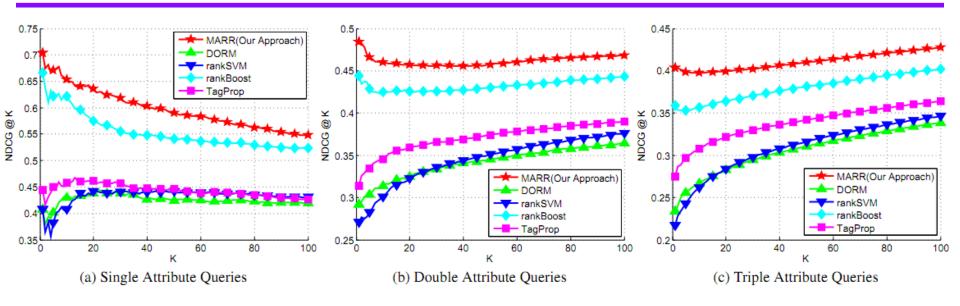
FaceTracer Dataset

(Kumar et. al, ECCV 2008)

Attribute Annotation

- 3000 images
- 27 attributes

FaceTracer Dataset: Quantitative Results



Results

- > rankBoost is the 2nd best
- > Performance gain
 - Single Attribute Queries: 5.0% improvement in NDCG@10
 - Double Attribute Queries: 8.1% improvement in NDCG@10
 - Triple Attribute Queries: 11.6% improvement in NDCG@10

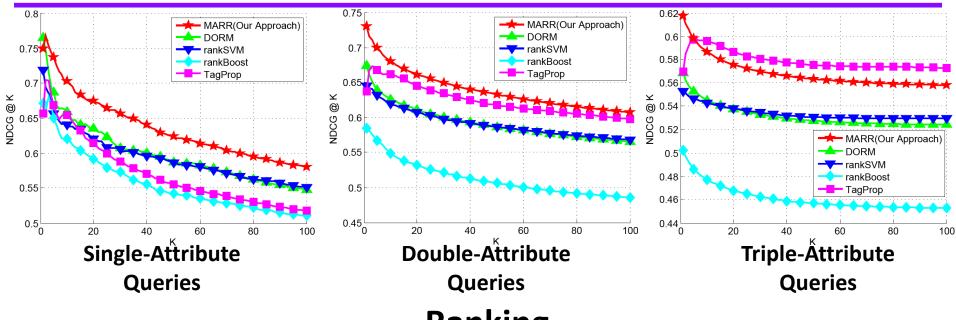
Pascal Dataset

Visual Object Classes Challenge 2008 (VOC2008)

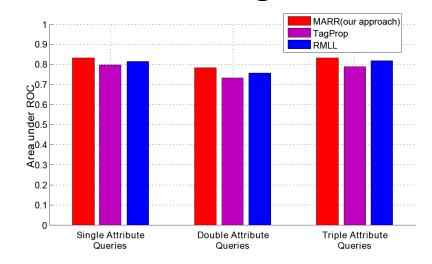
Dataset Statistics

- > 12695 images (6340 train, 6355 test)
- 20 classes
 - Airplane, bicycle, bus, horse, person, ...
- > 64 Attributes and Parts
 - Attributes: 2D Boxy, Round, Vertical Cylinder, Horizontal Cylinder, ...
 - Parts: Window, Headlight, Text, Leg, ...

Pascal Dataset: Quantitative Results

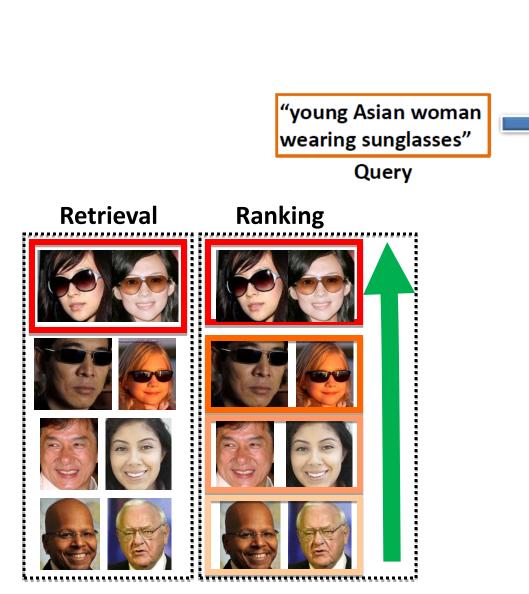


Ranking



Retrieval

Image Ranking and Retrieval based on Multi-Attribute Queries



Other Attributes

Questions?

