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Abstract

A good training dataset, representative of the test images
expected in a given application, is critical for ensuring good
performance of a visual categorization system. Obtaining
task specific datasets of visual categories is, however, far
more tedious than obtaining a generic dataset of the same
classes. We propose an Incremental Multiple Kernel Learn-
ing (IMKL) approach to object recognition that initializes
on a generic training database and then tunes itself to the
classification task at hand. Our system simultaneously up-
dates the training dataset as well as the weights used to
combine multiple information sources. We demonstrate our
system on a vehicle classification problem in a video stream
overlooking a traffic intersection. Our system updates itself
with images of vehicles in poses more commonly observed
in the scene, as well as with image patches of the back-
ground, leading to an increase in performance. A consider-
able change in the kernel combination weights is observed
as the system gathers scene specific training data over time.
The system is also seen to adapt itself to the illumination
change in the scene as day transitions to night.

1. Introduction

The problem of visual category recognition has received
considerable interest over the past few years. The most
common approach consists of three major components: in-
terest point detection, interest region description and clas-
sification. A recent focus has been on improving region
descriptors. This has led to a number of powerful descrip-
tors being proposed such as Histograms of Oriented Gra-
dients [8], Geometric Blur [3] and Pyramidal Histogram of
Visual Words [6]. While each of these descriptors provides
good classification accuracies for different object classi-
fication tasks, combining information from such multiple
sources has been shown to be more reliable [5, 24, 19].
Varma et al. [19] proposed combining multiple descriptors
using Multiple Kernel Learning (MKL) and showed impres-
sive results on varied object classification tasks.

Using such a set of powerful descriptors, along with
a nonlinear classifier such as a Support Vector Machine
(SVM), can lead to a boost in classification performance.
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Figure 1. Sample result frames showing varying illumination con-
ditions. Our incremental framework (IMKL) tunes itself to the
scene by updating itself with images of objects in commonly ob-
served poses and images of the varying background. Thus, it out-
performs a static detector built on a generic training set.

But it is equally important to have a good set of training
images, representative of the test images that are expected
in the given application. Collecting large number of im-
ages and forming a generic training dataset for commonly
seen objects is relatively easy using an internet search en-
gine such as Google. Furthermore for many standard ob-
jects such as cars, training datasets are already available,
such as the UIUC Car Database [1]. However, obtaining
a representative training database for a given application is
not as straightforward, as it requires a fair amount of manual
labor.

Consider a camera at a traffic intersection detecting and
classifying vehicles such as shown in Figure 1. First, the
location of the camera in this scene and typical paths tra-
versed by the vehicles, restricts the observed poses. Sec-
ond, the camera position restricts the images representing
the negative class (in our case, the background images) for
this classification task. Third, images corresponding to ve-
hicles as well as background also change over time, due to
factors such as illumination changes and shadows cast by
the nearby buildings. Obtaining such scene specific exam-
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ples of the object classes and the background class would
clearly benefit the visual classifier, but would require a te-
dious manual annotation procedure.

Our Incremental Multiple Kernel Learning (IMKL) ap-
proach uses an easily obtained generic training database as
input, and then tunes itself to the classification task at hand.
It simultaneously updates the training examples to tailor
them towards the objects in the scene. It also updates the
weights that determine the optimal combination of differ-
ent information sources1, while allowing different combi-
nations to be chosen for different object classes. Finally,
it tunes the classifier to the updated training dataset. As
the scene changes over time, a feedback loop updates our
training dataset with detections from all object classes. The
incremental procedure is then invoked to update the ker-
nel combination weights as well as the classifier. Our final
system is obtained by combining the outputs of this online
classifier with the high probability outputs of the original
offline classifier trained on the generic training database.
This enables us to tune the classifier to the given scene,
while reducing the number of misclassifications on rarely
seen objects. We can also remove images from our train-
ing database over time. This is useful when dealing with
gradual illumination changes, for example.

We first describe the MKL formulation of Bach et
al. [15], known as SimpleMKL, which we use to obtain
a classifier for the initial training database. SimpleMKL
carries out this optimization in an SVM framework to si-
multaneously learn the SVM model parameters as well as
kernel combination weights. Our incremental procedure for
MKL is an exact online solution that allows us to update
the Lagrangian multipliers of the training points, as well as
the kernel combination weights, one new point at a time.
The central idea is to add a new data point to the solu-
tion and update its Lagrangian multiplier while maintaining
the Karush-Kuhn-Tucker conditions on all the current data
points in the solution. We derive our IMKL procedure in
Section 3.

We demonstrate our visual categorization framework on
the task of vehicle detection and classification. The dataset
we use consists of video sequences collected from a camera
overlooking a traffic intersection. We initialize our training
database with a set of images collected from Google and
update it incrementally to improve the classification per-
formance over time. The dataset also shows a significant
change in illumination conditions in the scene as day tran-
sitions into night. Our system is able to update itself over
time to handle this transition. We compare our algorithm
with OPTIMOL [13], an incremental model learning ap-
proach, recently proposed for the task of automatic object
dataset collection.

2. Related Work

Early works on object recognition used global features
such as color or texture histograms [14]. However these

1In this paper each information source refers to a kernel matrix.

features were not robust to view-point changes, clutter and
occlusion. Over the years, more sophisticated approaches
such aspart-based[9] and bag-of-features[16] methods
have become more popular.

Increased interest in object recognition has resulted in
new feature descriptors and a multitude of classifiers. In-
spired by the pyramidal feature matching approach of [12],
Bosch et al. proposed two new region descriptors - the
Pyramidal Histogram of Oriented Gradients (PHOG) and
Pyramidal Histogram of Visual Words (PHOW) [6]. These
features were then used with Random Forests as a multi-
way classifier [5]. Zhang et al. used the Geometric Blur
(GB) feature [3] and proposed using a discriminative near-
est neighbor classification for object recognition [23]. Wu
et al. [21] used edgelet features to capture the local shape of
objects and were able to simultaneously detect and segment
objects of a known category.

Zhang et al. [24] combined multiple descriptors and ob-
tained improved results for texture classification and object
recognition. They provided equal weights to each descrip-
tor. Similarly, Bosch et al. [5] linearly combined the PHOG
and PHOW descriptors to obtain improved performance.
The linear combination weights were, however, obtained by
a brute force search using a validation dataset. Since the
number of features was small, their search space had few
dimensions, thus making the brute force computationally
feasible. Wu et al. [22] combined multiple heterogeneous
features for object detection by using cascade structured de-
tectors in a boosting framework. Features were combined
using their classification powers and computational cost.

Lanckriet et al. [11] introduced the MKL procedure to
learn a set of linear combination weights, while using mul-
tiple sources of information with a kernel method, such
as an SVM. Their problem formulation, however, resulted
in a convex but non-smooth minimization problem. Bach
et al. [2] considered a smoothed version of the problem.
Their Sequential Minimal Optimization (SMO) algorithm
was significantly more efficient than the previous formu-
lation in [11]. Sonnenburg et al. [17] reformulated the
problem as a semi-infinite linear program and solved it ef-
ficiently by recycling the standard fast SVM implementa-
tions. Their algorithm worked for hundreds of thousands
of examples or hundreds of kernels. Rakotomamonjy et
al. [15] formulated the problem using a 2-norm regulariza-
tion formulation to a smooth and convex optimization prob-
lem. Their method provided the additional advantage of en-
couraging sparse kernel combinations. Varma et al. [19]
combined multiple features using MKL and showed a con-
siderable increase in the performance of their visual classi-
fier.

A number of unsupervised, online learning algorithms
have been used for computer vision applications. Li et
al. [13] used a non-parametric graphical model in an in-
cremental approach for automatic dataset collection from
the Internet (OPTIMOL). Their iterative framework simul-
taneously learns object category models and collects object
category datasets. We compare our IMKL method with OP-



TIMOL in Section 5. Boosting techniques for incremen-
tal learning have also been popular. Javed et al. [10] used
co-training to label incoming data and used it to update a
boosted classifier. Co-training [4] is a method for train-
ing a pair of learners, given that the two algorithms use
different viewsof the data. The two classifiers are used
to provide additional informative labeled examples to one
another, which improves the overall performance. Wu et
al. [20] extended the online boosting algorithm and pro-
posed an online framework for cascade structured detec-
tors. An automatic labeler called theoracle, with a high
precision rate, provided samples to update the online ob-
ject detector. In order to prevent the boosting algorithm
from overfitting noisy data (provided by theoracle), they
employed two noise resistant strategies from variants of the
Adaboost algorithm designed to be robust to outliers. Our
initial object classifier, built from a generic training dataset,
is tuned similar to thisoracle. Our work builds on MKL
and fits well into the SVM framework. It also provides the
useful property of being able to adapt kernel weights over
time in addition to updating the training database.

3. An Incremental Solution

3.1. The Multiple Kernel Learning Problem

Kernel based learning methods have proven to be an ex-
tremely effective discriminative approach to classification
as well as regression problems. Given multiple sources of
information, one might calculate multiple basis kernels, one
for each source. In such cases, the resultant kernel is often
computed as a convex combination of the basis kernels,

Φ(xi, xj) =

K∑
k=1

dkΦk(xi, xj),

K∑
k=1

dk = 1 , dk ≥ 0 (1)

wherexi are the data points,Φk(xi, xj) is thekth kernel
and dk are the weights given to each information source
(kernel). Learning the classifier model parameters and the
kernel combination weights in a single optimization prob-
lem is known as the Multiple Kernel Learning problem [11].
There have been a number of formulations for the MKL
problem, as noted in Section 2. Our incremental approach
builds on the MKL formulation of [15], known as Sim-
pleMKL. This formulation enables the kernel combination
weights to be learnt within the SVM framework. The opti-
mization equation is given by,

min
∑

k

1

dk
wkwT

k + C
∑

i

ξi

such that yi

∑
k

φk(xi) + yib ≥ 1− ξi ∀i (2)

ξi ≥ 0 ∀i, dk ≥ 0 ∀k,
∑

k

dk = 1

whereb is the bias,ξi is the slack afforded to each data
point andC is the regularization parameter. The solution to
the above MKL formulation is based on a gradient descent
on the SVM objective value. An iterative method alternates
between determining the SVM model parameters using a

standard SVM solver and determining the kernel combina-
tion weights using a projected gradient descent method.

3.2. Karush-Kuhn-Tucker Conditions

The support vectors returned by the training algorithm
of an SVM generally represent a small fraction of all the
training examples, but are able to summarize the decision
boundary between the classes very well. Thus, one way to
increment an SVM is to retain only the support vectors, to
reduce the computational load required at every successive
training step [18]. The same approach could be used for
the MKL problem. However, this gives only approximate
results.

The first exact online approach to train SVMs was pro-
posed by Cauwenberghs et al. [7]. New data points are pre-
sented to the SVM one at a time. The new data point is
added to the solution while ensuring that the Karush-Kuhn-
Tucker (KKT) conditions are retained on all the previous
data points. Our proposed approach to IMKL is inspired by
this work.

The key idea behind the Incremental SVM is that the
SVM optimization problem is convex. Thus, the KKT con-
ditions are not onlynecessarybut alsosufficient. Thus,
maintaining the KKT conditions on all old points, as well
as the new point, indicates that a new solution has been ob-
tained. The optimization problem given by the SimpleMKL
framework in Equation 2 is also convex, making it suitable
for our purposes.

The KKT conditions for our problem are derived from
the Lagrangian function corresponding to Equation 2,

L =
1

2

∑
k

wkwk

dk
+ C

∑
i

ξi −
∑

i

νiξi − µkdk −∑
i

αi(yiwkφk(xi) + yib− 1 + ξi)− λ(
∑

k

dk − 1) (3)

whereαi is the Lagrange multiplier corresponding to the
first constraint in Equation 2,νi andµk are the Lagrange
multipliers associated with the non-negativity constraints on
ξi anddk respectively, whileλ corresponds to the Lagrange
multiplier of thel1-norm equality constraint ond.

The optimal solution of the multiple kernel system in
Equation 2 occurs at the saddle point of Equation 3. The
saddle point is obtained by differentiating the Lagrangian
equation with respect to the primal variables(wk, dk, ξi, b)
and the dual variables(αi, νi, µk). A small amount of alge-
braic manipulations yields the KKT conditions given below,

gi =
∑

j

∑
k

dkαjQ
k
ij + yib− 1 = 0,

∑
i

αiyi = 0

1

2

∑
i

∑
j

αiαjQ
k
ij + µk − λ = 0, µkdk = 0,

∑
k

dk = 1 (4)

whereQk
ij = yiΦk(xi, xj)yj .

Note thatgi = yif(xi) − 1, wheref(xi) is the solution
of the multiple kernel SVM given by,

f(xnew) =
∑

j

∑
k

dkαjyjΦk(xj , xnew) + b (5)



3.3. Algorithm

Consider a set of data instances(x1, x2, . . . , xn) with
corresponding class labels(y1, y2, . . . , yn). Let Φk(xi, xj)
be the set ofK kernels. The MKL solution for the given
data is obtained by SimpleMKL and it thus satisfies the
KKT conditions in Equation 4. The data points are divided
into three disjoint sets based on their Lagrange multipliers
(α′

is): setL containing the set of points lying on the cor-
rect side of the margin vectors (αi = 0), setS containing
the support vectors (0 < αi < C) and setE containing the
points lying on the wrong side of the margins (αi = C). We
also divide the kernels into two sets: setD+ containing ker-
nels with positive weights and setD0 with kernels having
zero weight. These sets are illustrated in Figure 2.

When a new pointxq is added to the solution, we need
to calculate its Lagrange multiplierαq (0 ≤ αq ≤ C) such
that the KKT conditions are satisfied once again. We begin
with a valueαq = 0 and keep increasing it until we reach
the updated solution. Every time we incrementαq, the re-
maining Lagrangian multipliers, the kernel weights and the
bias must be changed to maintain the constraints in Equa-
tion 4. These changes are given by the differential form of
the constraints, ∑

j

αj

∑
k

∆dkQk
ij +

∑
j

∆αj

∑
k

Qk
ij

+
∑

j

∑
k

∆dk∆αjQ
k
ij + yi∆b = 0, ∀i ∈ S,∀j ∈ {S, E, L, q}

∑
i

∑
j

∆αiαjQ
k
ij +

1

2

∑
i

∑
j

∆αi∆αjQ
k
ij

(6)

+∆µk −∆λ = 0, ∀k ∈ K∑
i

αiyi = 0∀i ∈ {S, E, L, q},
∑

k

∆dk = 0

∆µkdk + µk∆dk + ∆µk∆dk = 0, ∀k ∈ K

For a given step size∆αq, Equation 6 is a set of
(numS + 2K + 2) equations in(numS + 2K + 2)
unknowns. Here,numS is the number of points in set S
andK is the number of kernels. The unknown variables are:
{∆α1 . . . , ∆αnumS

,∆d1, . . . ,∆dK ,∆µ1, . . . ,∆µK ,∆b, ∆λ}.
These non-linear equations can be solved using a standard
non-linear equation solving package. Since an addition of
a new point may not alter the system significantly, a good
initial solution for all the unknowns in Equation 6 is0.

The above differential equations only hold when∆αq is
small enough to ensure that there is no change in set mem-
bership for either the points or the kernels. Thus, when set
membership changes, the differential equations are updated
and the process is repeated. The conditions for a change in
the set membership are described in Figure 2.

The algorithm is terminated when any of the following
conditions occur.

• gq > 0 at αq = 0: xq is a correctly classified point.
Added to set L.

• gq = 0 beforeαq = C: xq is a support vector. Added
to set S.

L

S

E

gi(+,0)

gi(0,-)

αi(+,0)

αi(+,C)

αi= 0 D+

D0

d k
= 

0

μ
k = 0

dk(+,0) μk(+,0)

gi
> 

0
gi

= 
0

gi
< 

0 αi= C
 

0 < αi< C

d k
> 

0

μ
k > 0

Figure 2. Categorization of the data points and kernels. The im-
age on the left shows the values of the Lagrange multipliers (α′s)
and the output of the system (g′s) for each of the sets:L, S and
E. It also shows the conditions that are checked to detect a set
transition. (Notation:gi(+, 0) denotes the value ofgi changing
from a positive value to 0.) The image on the right shows the two
kernel sets, the corresponding values of the weights (d′s) and their
Lagrange multipliers (µ′s) and the set change conditions.

• αq = C andgq < 0: xq is on the wrong side of the
margin. Added to set E.

A similar procedure can be used for removing data points
from the classifier (decremental unlearning).

The number of computations required by the IMKL al-
gorithm depends on the computations to solve the non-
linear system and the number of steps taken to reach the
final value of∆αq. In our experiments, we have observed
that setting the initial solution of the non-linear solver to
a zero vector, reduces the computational cost significantly.
The number of steps taken to reach the final solution is
lower bounded by the number of set changes that are re-
quired to arrive at the final solution. We use a large step
size at every time instant and backtrack our solution if we
observe a set change for the given step size. The IMKL
algorithm can also be sped up by ignoring the higher order
terms in Equation 6 to obtain linear equations. However this
provides only an approximate solution.

Consider the two class classification problem shown in
Figure 3. A new pointq, marked in red, is added to the
system, and it initially gets misclassified. As the Lagrange
multiplier αq is incremented upwards from a value of 0,
the distance between the new point and the margin reduces,
while some of the other points change set membership. At
the same time, the kernel combination weights also change.

4. Object Recognition Framework

A training database, representative of the expected test
points, is an essential component of any classification sys-
tem. In a practical object recognition framework, a good
training database is one that contains images of the expected
objects in their more likely poses and illumination condi-
tions. It must also contain a representative set of images in
the negative set, which, in an object recognition framework,
is usually the background. Obtaining such a set of good
training examples can often be a tedious process. On the
other hand, it is easier to obtain a generic training dataset of
images of the expected object classes. Our object detector



Figure 3. A 2-class classification example. Points in class 1 are
shown in orange and points in class 2 are shown in blue. Points
in setS are marked with a black border. Points in setL are solid
colored while points in setE are not filled with color. Kernel 1
(weight shown by the brown bar) captures the similarity between
the y-coordinates of the points, while Kernel 2 (green bar) captures
the similarity between the x-coordinates. The left figure shows
the effect of adding a new point (shown in red) on the original
points and the weights. A change in set membership is observed
for some points. The figure on the right shows the final classifier
after adding 7 new points close to the first new point.

is initialized on a generic training dataset and tunes itself
towards the objects and background in the scene.
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Figure 4. Object recognition framework.

Figure 4 provides an overview of our visual categoriza-
tion framework. Training images from a generic training
dataset are used to train an initial object detector which we
call theglobal detector. Theglobal detector is not updated
at any time and serves as a generic object classifier. The
generic training dataset is also used to train alocal object
detector, which runs in an online mode throughout the du-
ration of analysis. Incoming images from a video stream
are scanned using overlapping windows and each window is
classified into one of the classes by both the detectors. The
classification results returned by the global detector keep
updating the training image sets of the local object detector.

The updating criterion differs for the foreground classes
(buses and cars) and the background class. The image win-
dows that are classified by theglobal detector as belonging
to one of the foreground classes are thresholded so as to re-
tain only very high confidence detections. Such windows
are considered reliable detections and used to update the
foreground training sets of thelocal object detector. Since
the purpose of the local object detector is to train on typi-
cally observed appearances and poses, updating it with high
confidence samples works well. The high precision of the
globaldetector comes at the cost of a lower recall. Updating

the local detector with false positives can lead to a signifi-
cant drop in the performance of the system, and the proba-
bility threshold is set sufficiently high to minimize this.

On the other hand, for the background class, such an up-
dating criterion leads to the addition of a large number of
image patches from a single portion of the scene. This is
because background patches with very similar appearances
repeat over several frames. Thus if a patch gets classified
with a very high probability of belonging to the negative
set, several similar images also get added to thelocal train-
ing set. Ideally, one would like the entire scene to be well
represented in the background class of the local detector.
Thus, we first threshold image windows classified by the
globaldetector as belonging to the background class. Then,
for every image patch passing this initial criterion, we eval-
uate its positional entropy with respect to the distribution
of the positions of all image patches currently in thelocal
background training set. This is given by,

H(I) = −
∑

w∈{BGlocal}

p(w(x,y)|I(x,y)) log p(w(x,y)|I(x,y))

(7)
wherew represents an image patch in the current back-
ground set,I represents the new image patch and(x, y)
represent the co-ordinates of an image patch in the scene.
Image patches passing the initial background threshold, as
well as having a high entropy with respect to the current
local training set, form good candidates to improve the di-
versity of thelocal background set and are added to it. Over
time, the object classes get updated with images of objects
in their typical observed appearances and poses and the
background class gets updated with image patches from dif-
ferent parts of the scene. Figure 5 demonstrates the image
patches in thelocal background set which has been updated
using both criteria. Using the entropy criteria in addition to
a probability threshold, samples the entire scene well. Li et
al. [13] used a similar criteria to update their dataset. While
their entropy is calculated in the feature space, our measure
is calculated in the image co-ordinate space.

The local detector fits itself towards image patches ob-
served in the recent past, improving its performance. How-
ever, it also has the tendency of misclassifying objects that
are atypical in the scene, due to overfitting on the observed
data. The more generically trainedglobal detector helps
classify such atypical objects. The outputs of both detectors
are combined to obtain the final detections. The resultant
object detections are used to update thelocal detector.

In order to fit the local detector towards a dynamically
changing scene, it is also important to discard image patches
from the local training dataset. For every image patch added
to the local set, we retain a timestamp indicating the frame it
was obtained from. We use this to discard training samples
based on the length of their stay in the training set. Thus the
classifier adapts itself towards changing illumination condi-
tions, particularly when day transitions to night.

Our IMKL algorithm described in Section 3 is used to
update theLocal classifier with new training images. This



Figure 5. Representation of thelocal negative training set using
two sampling methods to update the training set. For this display,
all image patches in the set are added together at the appropriate
locations in the scene. Thus brighter regions corresponds to more
patches in that portion of the scene, black regions indicate that
no image patches represent that portion of the scene. (Left) High
probability criteria - Only certain portions of the scene are rep-
resented. (Right) High probability + high entropy criteria - Most
portions of the scene are represented equally.

also results in an update of the kernel combination weights
based on the training data. We use multiple 1-Vs-All clas-
sifiers for our purpose of multi-class classification. This en-
ables us to compute a separate set of kernel combination
weights, one for each object class. In Section 5 we show an
example of the evolution of these kernel weights over time.

5. Experiments
We test the performance of our system on the task of

object detection on videos taken from a traffic dataset. This
dataset consists of 11 challenging videos (480 x 704 pixels
at 15 frames/second), of a busy intersection, taken from a
traffic surveillance camera. The total number of frames is
more than 120,000. Our task is to detect two classes of
objects, cars and buses. We have ground truth marked for
every tenth frame in this dataset.

Due to the camera location and traffic restrictions in the
scene, cars in the video typically have a frontal view, while
buses typically appear in a profile view. Other views are
also observed, but they are less common. Thecar cate-
gory includes cars of varying sizes as well as SUV’s and
trucks. With a few exceptions, buses have a similar appear-
ance, since most of them are public transportation buses.
The dataset consists of videos captured at different times
of the day, resulting in a variety of illumination conditions
as shown in Figure 1, including street-lights at night. For
videos captured during the transition of day to night, the
appearances of the vehicles also change (most prominently,
vehicles in the dark have their headlights turned on).

5.1. Kernel Matrices
We use 5 kinds of features in our system, giving rise to a

total of 17 kernel matrices. The first feature used is the Pyra-
midal Histogram of Oriented Gradients (PHOG-180) [6] to
represent local shape. This consists of HOG features calcu-
lated over increasingly finer spatial grids. The orientations
are calculated over the interval[0, 180].We set the number
of levels of the pyramid to 4. HOG features calculated for
grids within the same level of the pyramid are concatenated
to form a long feature vector, but feature vectors calculated
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Figure 6. Snapshots of the training set at 4 time instants. Top row
shows the initial training set. The next 3 rows show sample images
added tolocal over time. The illumination change is noticeable at
each time instant. The dataset gets updated with many objects in
similar poses and representative background patches.

at different levels are treated independently. Our IMKL al-
gorithm automatically weights each level of the pyramid
based on the training dataset. Histogram intersection is used
as the similarity metric for all features in this paper. The
first feature gives rise to 4 kernels, one for each level of the
pyramid. The second feature is the PHOG-360. It only dif-
fers from PHOG-180 in that orientations are calculated over
the interval[0, 360]. This also gives rise to 4 kernels.

The third feature, PHOW-Gray [6], encodes appearance.
SIFT features are densely sampled at 10 pixel intervals in
each direction and quantized to a 300 visual words vocab-
ulary. Histograms of visual words are calculated over an
increasing number of grids at each pyramidal level. We use
3 levels. The fourth feature is PHOW-Color. The only dif-
ference from PHOW-Gray is that it is calculated on the 3
channels of the HSV image. These give rise to 6 kernels.

The fifth feature is Geometric Blur (GB) [3], which cap-
tures shape information of the objects and also accounts for
the geometric distortion between images. The un-quantized
GB feature was used with an expensive correspondence
based distance metric in [23]. However, in order to speed-up
computations, we quantized the GB feature to a set of 300
visual words. We then calculated histograms of GB words
in the same pyramidal framework to enforce some measure
of spatial constraints. We used a 3 level pyramid. Thus we
obtained a total of 17 kernel matrices.

5.2. Analysis
Evaluation of MKL. We first evaluate the power of us-
ing multiple kernels and using MKL to determine kernel
weights for the given classification task. For this purpose,
we created a validation dataset consisting of images of
buses, cars and background extracted from the ground truth
as well as the initial training set (obtained from Google).
We then individually evaluated each kernel as well as the
combination of kernels using a Sum of Kernels (SoK) ap-
proach (such as in [12]) and an MKL approach for both
object classes over the validation set. The SoK approach as-
signs equal weights to all kernels. SoK has been known to
provide good results when kernels are carefully chosen for
the given data, but its performance degrades in the presence
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(b) Precision-Recall for buses
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(c) Precision-Recall for cars
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(d) Efficiency of IMKL

Figure 7. (a) shows the evaluation of the individual kernels, combination using SoK and combination using MKL. MKL outperforms all
other schemes. The best performing individual kernel is GB. (b) and (c) show the Precision-Recall curves for thebusandcar classes
respectively. Using our incremental object detector consistently increases performance in both cases. (d) compares the processing time of
our incremental approach to retraining the MKL system at every step using all available images.

of noisy kernels. In our experiments, the MKL approach
performs better than all other methods where as the SoK ap-
proach comes in second, outperforming both GB (the best
performing individual feature) and the popular SIFT fea-
ture. Figure 7(a) shows the results for theBusesclass.
Local dataset snapshots.We now demonstrate results of
our IMKL approach on the video dataset. Starting from
a generic training dataset, our IMKL algorithm simultane-
ously updates the training dataset as well as the kernel com-
bination weights. Figure 6 shows snapshots of the training
database at different time instants for one video.
Kernel weights over time. Figure 8 demonstrates the
change of kernel combination weights over time. For this
experiment, we chose a video where the scene is bright in
the beginning but gets very dark by the end. We do not dis-
play kernel weights 1 to 8, since they do not show consider-
able change over time. Time 1 refers to the initial training
dataset obtained from Google. Between times 1 and 2, we
do not update the foreground classes to study the effect of
updating only the background training set. This also causes
a non-trivial change of weights (Time 2). After time 2, we
update all object classes. Between times 2 and 3, the scene
is bright. In this period, the detector tunes itself towards
objects of specific poses and background patches. Beyond
time 3, the scene gets darker. Here, PHOW-Color weights
show a considerable drop (kernels 12-14), since color infor-
mation in the video deteriorates, while PHOW-Gray kernels
get higher weights. GB at fine spatial resolution (kernel 17)
gets high weights with decreasing illumination, indicating
added importance to positional information (such as impor-
tance given to the position of vehicle headlights).
Performance evaluation. Figures 7(b) and 7(c) show the
performance of our system for thebusandcar classes re-
spectively, averaged over all videos in the dataset. We com-
pare our IMKL object detector with 3 other detectors. Our
baseline detector (which we call theGenericdetector), rep-
resents an object detector built offline using only the generic
training dataset and is not updated over time. It uses all 17
kernels and MKL to obtain the kernel weights. Our sec-
ond comparison is to an object detector built on the generic
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Figure 8. Kernel combination weights sampled at multiple time
instants. Results shown forBusesclass.(see text for details)

Google dataset and updated over time, but using SoK (equal
kernel weights). Since these kernel weights are fixed over
time, an incremental SVM approach suffices as the clas-
sifier. Our third comparison is to OPTIMOL [13], an in-
cremental model learning approach, recently proposed for
automatic object dataset collection.2 The OPTIMOL algo-
rithm is run independently of the IMKL system with a sin-
gle change. In [13], Li et. al use SIFT as their feature de-
scriptor. But given the superior performance of GB in our
validation set (Figure 7(a)), we use histograms of GB based
visual words as our feature descriptor for OPTIMOL.

Our IMKL approach outperforms the other 3 methods,
especially at high recalls. Figure 10 provides some more
insight into the results. This plot shows the performance of
the various methods over time for one of the videos in our
dataset for which illumination changes. The images at the
bottom show a sample frame within the specified time in-
terval. OPTIMOL starts off slowly but as it gets updated, it
catches up with the rest of the object detectors. As the scene
gets darker, however, its performance deteriorates. OPTI-
MOL uses GB, and even our IMKL approach begins to re-
duce the importance given to this kernel when the scene be-

2We obtained code for OPTIMOL from the authors.



Figure 9. Sample results from a video sequence showing the ability of our system to adapt to gradual illumination changes.

comes dark. We also noticed a low overall performance of
OPTIMOL (on a subset of the data) while using other ker-
nels such as PHOW-Gray and PHOW-COLOR. This is be-
cause no single kernel has been able to provide consistently
good results in all scene conditions. Using multiple kernels
with fixed weights (SoK) was also sub-optimal. Our IMKL
approach provided the best results because it was able to dy-
namically change kernel weights based on the current object
and scene characteristics. IMKL’s performance decreases
at times 4 and 6 since the scene changes, but recovers at
instants 5 and 7, once it updates itself sufficiently.

Figure 9 shows sample results. Overall, we detect buses
more reliably than cars. We are unable to consistently de-
tect cars smaller than 60x60 pixels, which is the case for
cars approaching from a distance, giving rise to a number
of false negatives. Finally, Figure 7(d) illustrates the com-
putational efficiency of the IMKL algorithm as compared to
retraining the entire system using SimpleMKL.
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Figure 10. Performance comparison of object detectors over time
for a single video forBusesclass.(see text for details)

6. Conclusion

We have proposed an Incremental Multiple Kernel
Learning (IMKL) approach to object recognition and
demonstrated the performance gains on a vehicle classifi-
cation task.
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