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ABSTRACT

We present a novel approach for multi-modal affect analysis
in human interactions that is capable of integrating data from
multiple modalities while also taking into account temporal
dynamics. Our fusion approach, Joint Hidden Conditional
Random Fields (JHRCFs), combines the advantages of purely
feature level (early fusion) fusion approaches with late fu-
sion (CRFs on individual modalities) to simultaneously learn
the correlations between features from multiple modalities as
well as their temporal dynamics. Our approach addresses ma-
jor shortcomings of other fusion approaches such as the dom-
ination of other modalities by a single modality with early fu-
sion and the loss of cross-modal information with late fusion.
Extensive results on the AVEC 2011 dataset show that we
outperform the state-of-the-art on the Audio Sub-Challenge,
while achieving competitive performance on the Video Sub-
Challenge and the Audiovisual Sub-Challenge.

Index Terms— Affect Recognition, Multimodal Fusion

1. INTRODUCTION

The affective state of a human is a good predictor of his or
her intrinsic motivation level and actual performance over a
variety of tasks [1]. This has led to increased interest in track-
ing the physical and affective states of humans for richer,
more sophisticated human-computer interfaces. Such track-
ing presents the challenge of state estimation through accurate
and unobtrusive detection of a large number of multi-modal
behaviors in real time. Human emotions are inherently subtle
and complex. They span multiple modalities such as paralin-
guistics, facial expressions, eye gaze, various hand gestures,
head motion and posture. Each modality contains useful in-
formation on its own and humans employ a complex combi-
nation of cues from each of these modalities to fully inter-
pret the emotional state of a person. The interactions between
multiple modalities combined with the distinctive temporal
variations of each modality make automated human emotion
recognition an extremely challenging problem.

There has been extensive work on human emotion recog-
nition in recent years [2, 3, 4, 5]. Recognizing that human
emotion varies dynamically, several works have used tech-
niques such as HMMs [3] and CRFs (and its variations) [2] for
analyzing human emotions. However, in the case of multiple

modalities, the majority of the work in automated human af-
fect sensing has focussed on analyzing each different modal-
ity in isolation rather than studying the inherent dependen-
cies and relationships across modalities [2, 3]. This is partly
due to the limited availability of suitably labeled multi-modal
datasets and the difficulty of fusion itself, as the optimal level
at which the features should be fused is still an open research
question. The work by Ramirez et al. [2] is a prime exam-
ple in this area. They present Latent-Dynamic Conditional
Random Field (LDCRF) [6] based models to infer the dimen-
sional emotional labels from multiple high level visual cues
and a set of auditory features [2] and then combine them us-
ing late fusion. However, this approach has the disadvantage
of losing cross modal correlations due to late fusion i.e. corre-
lations across modalities are explored only after inference on
class labels has already been made on the basis of individual
modalities.

In this paper we propose a novel sequence labeling ap-
proach, Joint Hidden Conditional Random Fields (JHCRFs),
that are capable of fusing data from multi-modal observa-
tion sequences. We also explore a novel combination of class
aware dimensionality reduction techniques followed by Hid-
den Conditional Random Fields (HCRFs), in case of uni-
modal data and JHCRFs for the case of multi-modal data.
We analyze four different affective dimensions - Activation,
Expectancy, Power and Valence [7]. We evaluate our ap-
proach on the first Audio Visual Emotion Challenge (AVEC
2011) dataset [7], which includes three sub-challenges: Audio
Sub-Challenge, Video Sub-Challenge and Audiovisual Sub-
Challenge. This enables us to examine the suitability of our
approach for analyzing unimodal audio and visual data as
well as multi-modal audio-visual data. We show that JHCRFs
outperform all of the selected baselines (SVMs, CRFs and
HCRFs) and are competitive with the state-of-the-art. Fur-
thermore, we demonstrate that JHCRFs outperform late and
early fusion methods with a number of classifiers (SVMs,
CRFs, and HCRFs).

The rest of the paper is organized as follows. In Section 2,
we describe the approach which includes the dataset, feature
extraction, the Partial Least Squares (PLS) based dimension-
ality reduction (subsection 2.3) and JHCRFs (subsection 2.4).
Next, we describe the experiments in Section 3 followed by
the conclusion.
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Fig. 1. Overview of our approach: We first extract features from the audio and visual streams, followed by PLS based
dimensionality reduction. SVMs are used for framewise classification of the low dimensional features, outputs of which are
used by JHCRFs for affect recognition.

Fig. 2. Sample frames from the AVEC 2011 dataset.

2. APPROACH

Fig. 1 shows an overview of our approach. The data consists
of audio and visual streams captured from human interac-
tions. We first extract features from the audio and visual data,
followed by Partial Least Squares (PLS) based dimensionality
reduction to help keep the problem tractable. SVMs are used
for frame-wise classification of the low dimensional features,
outputs of which are used by JHCRFs for affect recognition.
In the following we present details of each of these compo-
nents starting with a description of the dataset used to train
and test the approach.

2.1. Dataset

We test our approach on the dataset provided by the Au-
dio/Visual Emotion Challenge and Workshop (AVEC 2011)
[7]. The dataset involves users interacting with emotionally
stereotyped characters operated by a human. The dataset con-
sists of audio and visual data. The visual data contains the
mainly the face of the user interacting with the character, sam-
ple frames from the videos are shown in 2.1. The Audio data
consists of recordings of utterances of the user and are syn-
chronized with the video. The dataset has been annotated with
binary labels for four different affective dimensions Activa-
tion, Expectation, Power and Valence. The dataset also comes
with precomputed audio and video features, which we briefly
describe below. See [7] for further details of the dataset.

2.2. Features

2.2.1. Audio Features

The audio feature set consists of 1941 dimensions. This in-
cludes energy and spectral related low level descriptors, voic-
ing related low level descriptors and delta coefficients (deriva-
tives) of energy/spectral features. A variety of functionals are
computed over each of these audio features over segments
corresponding to automatically determined word boundaries.

2.2.2. Video Features

The video features consist of the locations of the face and
eye coordinates extracted using the OpenCV implementation
of Viola-Jones face/eye detectors. The detected face region
is then divided into 10 × 10 sub-blocks and uniform Local
Binary Pattern (LBP) features are extracted from each sub-
block. The dimensionality of the video feature vector is 5908.

2.3. PLS based Dimensionality Reduction

In case of both audio and video, the features have a high di-
mensionality. While it is possible to use the raw features di-
rectly in frame-wise approaches such as SVMs, it is not feasi-
ble to use them in dynamic methods such as CRFs. In order to
reduce the dimensionality of the raw features, we apply a sta-
tistical technique known as Partial Least Squares (PLS) [8].
In contrast to other commonly used dimensionality reduction
methods such as Principal Components Analysis (PCA), PLS
is a supervised dimensionality reduction method and takes
into account the class discriminability during dimensionality
reduction. Its effectiveness has been demonstrated for dimen-
sionality reduction of high dimensional HOG features for the
purpose of human detection [8].

Let X be an (n×D) matrix containing the features from
the training data and Y be an (n × C) matrix containing the
labels of the corresponding instances. Here D is the dimen-
sionality of the features and C is the number of classes. PLS
decomposes X and Y such that:

X = TPT + E (1)
Y = UQT + F



where T and U are (n × p) matrices containing the
p extracted latent vectors, the (D × p) matrix P and the
(C × p) matrix Q represent the loadings and the (n × D)
matrix E and the (n × C) matrix F are the residuals. The
PLS method iteratively constructs projection vectors Wx =
{wx1, wx2, . . . , wxp} and Wy = {wy1, wy2, . . . , wyp} in a
greedy manner. Each stage of the iterative process, involves
computing:

[cov(ti, ui)]
2 = max

‖wxi‖=1,‖wyi‖=1
[cov(Xwxi

, Ywyi
)]2 (2)

where ti and ui are the ith columns of the matrices T and
U respectively, and cov(ti, ui) is the sample covariance be-
tween latent vectors ti and ui. This process is repeated un-
til the desired number of latent vectors p, have been deter-
mined. PLS produces the projection matrix Wx which is used
to project the features to a low dimensional subspace. We em-
ploy PLS to learn the projection matrices for audio and video
features.

2.4. Joint Hidden Conditional Random Fields

In this subsection, we describe our Joint Hidden Condi-
tional Random Field (JHCRF) technique for discriminative
sequence labeling based on fusing temporal data from mul-
tiple modalities. Conditional Random Fields (CRFs) have
proved to be extremely effective for labeling sequential and
temporal data as they offer several advantages compared to
earlier approaches for sequence labeling like Hidden Markov
Models (HMMs), including the benefits of discriminative
learning, the ability to utilize arbitrary features and the abil-
ity to model non-stationarity [9]. Furthermore, augmenting
CRFs with hidden states [10, 11, 12], increases their represen-
tation and modeling power leading to further improvements in
performance. However, when presented with temporal data
from multiple modalities representing the same sequence,
most approaches deal with this by performing either Early
Fusion which involves fusing the data from multiple modali-
ties and using that as an input for a single CRF or Late Fusion
which consists of applying multiple CRFs for each modality
and then fusing the label probabilities obtained from the indi-
vidual sequences. However, both these approaches have their
disadvantages - in early fusion one modality can dominate the
others, while late fusion tends to lose cross-modal informa-
tion. We address these problems by proposing Joint Hidden
Conditional Random Fields (JHCRFs) which are capable of
effectively fusing data from multiple modalities while also si-
multaneously modeling the temporal dynamics of the data.

We now formally describe JHCRFs in detail. Without loss
of generality, we assume two modalities since the extension to
more than two modalities is straightforward. We are given a
set of n sequences, for which we have data from two different
modalities X = {Xi} and Y = {Yi}, where i = 1, 2, . . . , n
and each Xi is a sequence Xi = {xi1, xi2, . . . , xiT } of length
T , similarly Yi = {yi1, yi2, . . . , yiT }. Here xit ∈ RDx and
yit ∈ RDy , where Dx and Dy are the dimensionalities of the

data from modalities X and Y respectively. Corresponding to
each sequence Xi(Yi), we have a sequence of labels Wi =
{wi

1, w
i
2, . . . , w

i
T }, with wi

t ∈ C, where C is the set of labels.
Let us first describe CRFs and HCRFs, which will help us
compare and contrast them against JHCRFs.

Conditional Random Fields (CRFs): CRFs (Fig. 3a)
model the conditional distribution over the label sequence
given the data as:

p(W |X, θ) =
1

Z(X, θ)
exp(Ψ(X,W ; θ)) (3)

here θ are the model parameters, Ψ is the potential function
and Z(X,W, θ) is the partition function that ensures that the
model is properly normalized and is defined by Z(X, θ) =∑

W Ψ(X,W ; θ). The potential function Ψ is defined as:

Ψ(X,W ; θ) =
∑
j

θtjTj(wi−1, wi, X, i)+
∑
k

θskSk(wi, X, i)

(4)
where Tj is a transition feature function and Sk is a state fea-
ture function and θt and θs are the transition and state com-
ponents of the parameters respectively. Given a new obser-
vation sequence X and model parameters θ obtained during
training, the predicted label sequence W can be computed as
W = arg maxW p(W |X; θ).

Hidden Conditional Random Fields (HCRFs): An ap-
proach to improving the performance of CRFs involves aug-
menting them by introducing hidden variables. The hidden
variables model the latent structure increasing the represen-
tation power of the model, resulting in an improved discrim-
inative performance. As shown in Fig. 3b, corresponding
to each sequence of observations Xi and labels Wi, we in-
troduce a sequence of hidden variables Hi, defined as Hi =
{hi1, hi2, . . . , hiT }. The hidden CRF is now defined as:

p(W |X, θ) =
1

Z(X, θ)

∑
H

exp(Ψ(X,H,W ; θ)) (5)

with the partition function now defined as:

Z(X, θ) =
∑
W

∑
H

Ψ(X,H,W ; θ) (6)

and the potential function is modified to include state and
transition functions for the hidden variables:

Ψ(X,H,W ; θ) =
∑
j

θt
1
iT 1

j (wi−1, wi, X, i) (7)

+
∑
j

θt
2
jT 2

j (hi, wi, X, i) +
∑
k

θskSk(hi, X, i)

Training and inference are performed by marginalizing over
the hidden variables.

Our HCRF model assigns a label to each node of the se-
quence and closely resembles Hidden CRF models proposed
in [12] and [11] and these are quite different from the Hid-
den CRF model proposed in [10], which assigns a single la-
bel to the entire sequence. Also, note that both CRFs and
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b) Joint Hidden CRF.

Fig. 3. Variations of Conditional Random Fields.

HCRFs can only be applied over data from a single modality.
In case of multi-modal data, the most common approach is
to use CRFs and HCRFs by resorting to either early or late
fusion.

Joint Hidden Conditional Random Fields (JHCRFs):
We propose Joint Hidden Conditional Random Fields for fus-
ing temporal data from multiple modalities. We now have two
observation sequencesXi and Yi corresponding to two differ-
ent modalities. Corresponding to each observation sequence
Xi(Yi), we introduce a sequence of hidden variablesHx

i (Hy
i )

as shown in Fig. 3c. The Joint Hidden CRF is defined as:

p(W |X, θ) =
1

Z(X, θ)

∑
H

exp(Ψ(X,H,W ; θ)) (8)

where H includes both Hx and Hy . The partition function
Z(X, θ) remains the same as in Eq. 6, while the potential
function is modified as follows:

Ψ(X,H,W ; θ) =
∑
j

θt
1

i T
1
j (wi−1, wi, X, Y, i) (9)

+
∑
j

θt
2

j T
2
j (hxi , wi, X, i) +

∑
j

θt
3

j T
3
j (hyi , wi, Y, i)

+
∑
k

θs
1

k S
1
k(hxi , X, i) +

∑
k

θs
2

k S
2
k(hyi , Y, i)

The potential function includes state features S1 and S2 cor-
responding to both sets of hidden states, as well as transition
functions T 1 for transitions among the predicted states and T 2

and T 3 for transitions from the hidden states to the predicted
states. Therefore JHCRFs simultaneously model and learn the
correlations between different modalities as well as the tem-
poral dynamics of sequence labels. Learning and inference
are performed by marginalizing over the hidden variables.

2.5. Implementation Details

Our implementations of JHCRFs, HCRFs and CRFs are based
on the “Undirected Graphical Models” (UGM) software of

[13]. For learning and inference on these models, we use
max-product based Loopy Belief Propagation. In case of
PLS based dimensionality reduction, we use the first 10
components of the low dimensional subspace, both in case
of audio as well as video features. While the low dimen-
sional features obtained by PLS can be used as inputs to
the CRF/HCRF/JHCRF, we instead train SVM classifiers for
each emotion, on the low dimensional features and use the
SVM outputs as inputs to the JHCRF as this was empirically
found to give the best results.

3. EXPERIMENTAL RESULTS

We now present the experimental results to demonstrate the
effectiveness of our approach. We compare our JHCRF model
against several baselines as well as other state-of-the-art tech-
niques. We also compare against several different fusion ap-
proaches and show that JHCRF is an effective technique for
combining temporal data from multiple modalities. We com-
pare against three baseline methods, which are as follows:
PLS-SVM: This consists of training a non-linear (Radial Ba-
sis Function) SVM on the PLS induced low dimensional fea-
tures. The challenge baseline proposed by Schuller et al. [7]
is similar and it involves training an SVM over the statistics
of raw features.
CRF: This consists of training a Conditional Random Field
(CRF) based discriminative classifier over the SVM outputs.
Unlike the SVM which looks at each frame in isolation, the
CRF takes into account the temporal dynamics of the se-
quence of features.
HCRF: This involves training a Hidden Conditional Random
Field (HCRF) over the SVM outputs. A HCRF differs from a
CRF in that it has hidden nodes, which provides it increased
representation and modeling power.

The dataset consists of three different sub-challenges - Au-
dio Sub-Challenge, Video Sub-Challenge and the Audiovisual
Sub-Challenge. In each case, we use the training set for learn-
ing the classifier and report results on the development set.



We use weighted average accuracy as the performance mea-
sure, as it is also used in the AVEC 2011 challenge [7]. In
the Audiovisual Sub-Challenge we demonstrate the effective-
ness of fusing multi-modal temporal data. In case of the Au-
dio Sub-Challenge and the Video Sub-Challenge, the JHCRF
model is not applicable, since there is just a single modality
present, however we still show that our PLS based dimen-
sionality reduction followed by a standard HCRF model is
competitive with the state-of-the-art approach.

3.1. Audio Sub-Challenge

Here we compare our audio only approach against the base-
lines as well as three state-of-the-art approaches [3, 5, 2]. The
results are shown in Table 1. We can see that our approach
HCRF, outperforms all the other approaches in terms of mean
performance over all the four affective dimensions and thus
advances the state-of-the-art. The results also provide us with
two important insights. Firstly, note that training an SVM
on the PLS induced low dimensional subspace outperforms
training an SVM on raw features, while also being compu-
tationally much more efficient. Secondly, it can be seen that
approaches such as CRFs which model the temporal dynam-
ics of affect, outperform static methods such as SVMs (see
Fig. 4). Finally, we can see that Hidden CRFs further improve
upon the performance of CRFs, demonstrating the importance
of hidden states. These results show that each component of
our system - PLS based dimensionality reduction, CRF and
HCRF - leads to an increase in performance, thus systemati-
cally justifying our design choices.
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Fig. 4. SVM vs CRFs: The blue lines indicate the ground-
truth affect (arousal) labels for the Audio Sub-Challenge, the
green dots denote the frame-wise PLS-SVM probability out-
puts for arousal and the red curve denotes the probability out-
puts from a CRF. The plot illustrates that CRFs which analyze
the sequence as a whole, outperform static(frame-wise) meth-
ods such as SVMs, which can often be very noisy.

WA(%) A E P V mean
baseline [7] 63.7 63.2 65.6 58.1 62.65
[3] 66.9 62.9 63.2 65.7 64.67
[5] 65.1 54.2 61.3 61.8 60.57
CRF [2] 62.9 67.3 67.0 44.6 60.45
LDCRF [2] 74.9 68.4 67.0 63.7 68.50
PLS-SVM (ours) 64.6 66.6 66.2 61.9 64.81
CRF (ours) 76.9 65.5 68.7 61.7 68.20
HCRF (ours) 73.4 65.5 68.7 70.0 69.42

Table 1. Audio Sub-Challenge Results

3.2. Video Sub-Challenge

In the Video Sub-Challenge, we again compare our results
against the baselines and three different state-of-the-art ap-
proaches [3, 4, 2]. Again, one can see that the PLS dimension-
ality reduction helps in improving the results over the base-
line which is an SVM trained on the raw features. Also, dy-
namic methods (CRFs and HCRFs) outperform static meth-
ods (SVMs). In case of the Video Sub-Challenge, while our
results are competitive, they are marginally below [2] and [4].
We conjecture that this is due to the additional features used
by them. For example, [2] employs additional features such
as eye gaze, smile intensity and head tilt, while we use only
the LBP features that are provided by the challenge [7] and
we believe that the lack of these additional features results in
our performance being marginally inferior compared to [2].

WA(%) A E P V mean
baseline [7] 60.2 58.3 56.0 63.6 59.53
CRF [2] 72.3 53.8 46.2 69.5 60.45
LDCRF [2] 74.5 60.0 60.3 72.9 66.93
[4] 69.3 65.6 59.9 67.8 65.64
[3] 58.2 53.5 53.7 53.2 54.65
PLS-SVM (ours) 68.1 57.3 55.4 68.9 62.43
CRF (ours) 69.5 59.1 55.3 68.8 63.17
HCRF (ours) 70.1 59.5 55.4 68.8 63.45

Table 2. Video Sub-Challenge Results

3.3. AudioVisual Sub-Challenge

In the Audiovisual Sub-Challenge, we compare our results
against the state-of-the-art results [3] and [2], as well as early
and late fusion over different classifiers. The results in Table
3 show that JHCRF outperforms SVMs, CRFs and HCRFs,
demonstrating that JHCRFs are an effective technique for se-
quence labeling tasks over multiple modalities. Our results
are also competitive against the state-of-the-art and we out-
perform [3] and two different classifier-fusion combinations
in [2]. While the results of LDCRF (late fusion) [2] are supe-
rior to ours, we believe that this is due to the augmented set
of video features employed by them.

We also compare the performance of JHCRFs against dif-
ferent fusion methodologies over multiple kinds of classifiers.



The results are shown in Table 4. First of all, comparing the
results in Table 4 against Tables 1 and 2, we can see that with
each classifier type, fusion helps in improving results over
the individual modalities. The results also demonstrate that
JHCRF outperforms both early and late fusion over HCRFs
as well as other classifiers, thereby making it a superior al-
ternative to early and late fusion for multi-modal sequence
labeling tasks. Finally, we can also observe that late fusion
tends to perform better than early fusion does over multiple
classifier types.

WA(%) A E P V mean
[3] 69.3 61.7 61.3 68.8 65.27
LDCRF (Early) [2] 79.3 63.4 66.9 62.8 68.10
LDCRF (Late) [2] 81.7 73.1 73.3 73.5 75.40
SVM (Late) [2] 75.4 69.4 65.3 72.1 70.55
PLS-SVM (Late) 67.5 65.8 65.8 70.4 67.37
CRF (Late) 70.9 66.6 65.3 77.1 69.97
HCRF (Late) 70.5 66.5 65.6 77.1 69.90
JHCRF 75.7 66.3 69.1 76.3 71.85

Table 3. Audio-Visual Sub-Challenge Results

WA(%) A E P V mean
PLS-SVM (Early) 68.5 61.9 63.1 70.2 65.91
PLS-SVM (Late) 67.5 65.8 65.8 70.4 67.37
CRF (Early) 73.6 56.2 66.3 69.1 66.27
CRF (Late) 70.9 66.6 65.3 77.1 69.97
HCRF (Early) 70.8 57.6 66.2 74.6 67.29
HCRF (Late) 70.5 66.5 65.6 77.1 69.90
JHCRF 75.7 66.3 69.1 76.3 71.85

Table 4. Audio-Visual Sub-Challenge Fusion Experiments

4. CONCLUSION

We have proposed an approach for emotion recognition based
on audio and visual cues. The key novelty of our work is
an effective approach for fusing temporal data from multi-
ple modalities. We first perform a PLS based dimensional-
ity reduction on the raw audio and video features. For uni-
modal data, audio or visual, we apply a Hidden Conditional
Random Field on the low dimensional features for emotion
recognition. For multi-modal data, we propose a Joint Hidden
Conditional Random Filed (JHRCF) model for fusing tempo-
ral data from multiple modalities as an alternative to early
and late fusion. Extensive results on the AVEC 2011 dataset
show that we outperform the state-of-the-art on the Audio
Sub-Challenge, while achieving competitive performance on
the Video Sub-Challenge and the Audiovisual Sub-Challenge.
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