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ABSTRACT
We introduce the task of automatically classifying politically
persuasive web videos and propose a highly effective multi-
modal approach for this task. We extract audio, visual, and
textual features that attempt to capture affect and seman-
tics in the audio-visual content and sentiment in the viewers’
comments. We demonstrate that each of the feature modal-
ities can be used to classify politically persuasive content,
and that fusing them leads to the best performance. We
also perform experiments to examine human accuracy and
inter-coder reliability for this task and show that our best
automatic classifier slightly outperforms average human per-
formance. Finally we show that politically persuasive videos
generate more strongly negative viewer comments than non-
persuasive videos and analyze how affective content can be
used to predict viewer reactions.

Categories and Subject Descriptors
H.3.3 [[Information Search and Retrieval]: Search pro-
cess; I.2.10 [Vision and Scene Understanding]: Video
analysis

General Terms
Algorithms; Design; Experimentation

Keywords
Video Classification; Affect Recognition; Audio Concepts;
Video Concepts; Sentiment Analysis; Multimodal Fusion

1. INTRODUCTION
In the last few years social media has rapidly emerged as

an effective means to disseminate information to a large and
geographically diverse audience. Its low barrier of entry al-
lows not just well funded organizations but also individuals
to share and propagate their opinions and viewpoints. Mul-
timedia content in particular can both express and evoke
strong emotional responses, and there is reason to believe
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that audio-visual content can affect viewers more strongly
than text based content [16]. Viewer reactions are also visi-
ble in the form of comments, and so in this way social media
allows content creators and uploaders to spread a strong,
compelling message and observe its impact.

For these reasons, multimedia content on social networks
is particularly suitable to propagate political views, and it
is used for public influence, political persuasion and even
radicalization [10]. It is thus a potent tool to influence and
attract new followers, and there is great interest in many
sectors in detecting and assessing politically charged or oth-
erwise persuasive social media content.

In this paper, we propose a solution to detect such po-
litically persuasive videos posted on social media and also
develop methods to predict and analyze the sentiment of
comment responses. In order to analyze the audio-visual
content present in the videos we focus on robust extraction
of the semantic and affective information. For the audio do-
main we detect several grades of speech arousal and related
semantic categories such as crowd reaction and music. For
the visual domain, we detect visual sentiment and semantic
content. Finally we analyze the sentiment of comments asso-
ciated with a video to determine viewer reaction. Our clas-
sification results indicate that politically persuasive videos
posted online can be reliably detected based on extracted
affective and semantic information. Furthermore, we show
that politically persuasive videos often generate more neg-
ative reactions among viewers and the overall sentiment of
reactions can be predicted with a reasonable degree of suc-
cess solely from audio-visual features. Figure 1 shows an
overview of our approach.

There are two key contributions of our work:

• We demonstrate that affective and semantic informa-
tion extracted from the audio, visual and textual con-
tent associated with a video can be used to predict
whether the video is of a politically persuasive nature.

• We further show that politically persuasive videos gen-
erate more negative reactions in comments, that af-
fective content can indicate how viewers may react,
and that viewer reaction to semantically similar videos
varies with respect to the videos’ affective content.

We would like to emphasize that the goal of our work is to
demonstrate the utility of multi-modal affective features to
reliably identify politically persuasive media content, rather
than to develop sophisticated or novel content understand-
ing techniques. In particular, we show that an approach
leveraging these affective and semantic features can gener-
ally classify such videos as well or better than humans. We



Figure 1: Audio and visual concept scores and features are computed from the audio-visual data of a web video. These scores
are used to predict whether the video is politically persuasive and whether the comments in response will be highly polarized.
In addition, the actual comments are also used to predict whether a video is politically persuasive, and all three modalities are
fused for the best prediction results. In this example our system correctly predicts the video is both politically persuasive and
likely to have polarized comments based solely on audio-visual content. (https://www.youtube.com/watch?v=gDpcsx2CL9E)

believe that our work opens up an exciting new area of re-
search with a number of interesting applications.

2. RELATED WORK
There has been some recent work on detecting persuasion.

Park et al. collected and annotated a corpus of movie review
videos in [31]. From this data, they demonstrated that the
verbal and non-verbal behavior of the presenter is predictive
of how persuasive they are as well as predictive of the co-
operative nature of a dyadic interaction. Our work differs
from this in three key ways. First and foremost, while that
prior work attempts to predict whether a particular sample
will persuade a viewer (e.g. “is this persuasive”) we attempt
to classify whether a video contains a particular type of per-
suasive content (e.g. “does this video contain fiery political
rhetoric”). Secondly, we rely not only on the affective charac-
teristics of a speaker, but also on the affective characteristics
of viewers’ reactions as well as semantic content unrelated
to a main speaker (e.g. crowd reaction, background mu-
sic). Finally, we analyze a corpus that is collected from a
variety of unscripted situations recorded both indoors and
outdoors and whose audio-visual quality ranges from good
to poor, whereas the corpus in [31] consists of data captured
in controlled environments.

Detection of radical online content is a growing research
area due to the interest shown in it by law enforcement agen-
cies; Correa presented a survey of such work in [10]. This
detection is typically done in two ways: by analysis of the
network structure or by analysis of the content itself. Reid
et al. presented an network based approach in [32] that cap-
italized on the notion that websites that promote the same
ideology tend to be interconnected by hyperlinks. Most ap-
proaches that analyze content, such as the one presented
by Abbasi in [1], tend to focus on the textual and linguis-
tic content of websites rather than audio-visual content of
videos. To the best of our knowledge, Fu et al. presented
the only published work on detecting extremist videos in
[14], and their approach used the meta-data associated with
the video rather than the actual audio-visual content. In
contrast to these works, our approach is independent of any
network structure and exploits the audio-visual content it-
self as well as comments in reaction to it. Moreover, our

target class of politically persuasive videos is broader than
Fu et al.’s class of extremist videos.

There has been some work on sentiment analysis of vi-
sual content. This includes analysis of image aesthetics [20],
analysis of image interestingness and memorability [17] and
analysis of image affect and emotion [28]. There has also
been work on detecting visual sentiment expressed through
human behavior - e.g. facial expressions [37] - as well as
work on detecting image style [22]. We rely directly on two
prior works for visual content analysis. First, we use Jia et
al.’s CAFFE implementation from [18] which was trained
on concepts presented as part of ImageNet in [12]. Second,
we also use the Visual Sentiment Ontology presented in [5],
which consists of a large-scale ontology of semantic concepts
correlated with strong sentiments.

Detecting affect from human speech has grown in impor-
tance because of its applications in enabling realistic human
interactions [27, 33]. However, most of the work in this area
has been demonstrated on datasets collected in controlled
environments with little noise. Similarly detecting semantic
concepts in audio has long been an important problem in
the audio processing community due to its applications in
video retrieval [26, 6, 7]. Our audio concept detection, based
on [9] combines the best of both these approaches.

Sentiment analysis and opinion mining from text have
long been active research topics with varied applications
such as analyzing product reviews, improving question an-
swering systems, and mining political opinions. This area
is well covered by Pang and Lee’s survey in [30]. Recent
work, such as Socher et al.’s approach in [35], has improved
the accuracy of text based sentiment analysis significantly.
There has also been recent work focusing exclusively on text
in social media settings, such as Mohammad et al.’s senti-
ment analysis of Twitter data in [29]. We employ both of
these recent approaches to analyze and gauge user reactions
and opinions to videos in the form of comments.

There has also been work on combining information from
multiple modalities to better detect affect [21, 3]. The key
advantage of multimodal affect detection is that different
modalities contain complementary information and there-
fore fusing the information from them can lead to perfor-
mance improvements in detecting affect. We also adopt a



multimodal fusion approach to detect persuasive videos, and
fuse not only modalities based on audio-visual content (e.g.
speech characteristics, crowd response, visual semantics) but
also on viewer response (e.g. sentiment of user comments).

3. DATASET AND CLASSIFICATION TASK
For our experiments we use the Rallying a Crowd (RAC)

dataset, introduced in [9]. The RAC dataset consists of 230
videos from YouTube comprising over 27 hours of content.
The dataset contains 132 positive and 98 negative examples
of politically persuasive videos. Positive videos contain a
speaker vehemently rallying/persuading a crowd for political
causes. Negative videos also contain speakers and crowds
but lack political themes. Qualitatively, positive examples
are often events such as political rallies or protests. Negative
examples contain semantically similar content - e.g. speakers
addressing crowds - but lack the highly affected, politically
persuasive nature of the positive examples, and are often
events such as presentations or entertainment events.

Thus the classification task for these videos is neither one
of determining speaker valence nor whether a viewer is ac-
tually persuaded, but instead is a binary classification prob-
lem of determining whether politically charged videos can
be distinguished from videos with ostensibly similar audio-
visual content but lacking political content and vehemence.
The videos in the dataset were recorded under a wide variety
of conditions (e.g. outdoor vs. indoor, near vs. far) with
various levels of post-production (e.g. professional quality
clips vs. unedited amateur footage) and include samples
with multiple languages and settings.

3.1 Annotation and Human Accuracy
To quantify the difficulty of classifying politically charged

content and validate it as a legitimate identifiable class we
had four human annotators perform binary labeling of pos-
itive and negative RAC videos. This also allows us to com-
pare the performance of our automatic approach to human
performance. Ground truth was established by using par-
ticular search terms and establish a consensus decision for
each video among all the authors. We had four annotators
first view a “control” portion of the RAC dataset consisting
of 52 positive and 40 negative videos to form an opinion of
what constituted politically persuasive content. Each anno-
tator then chose a binary label for each of the remaining 80
positive and 58 negative videos. These 138 videos were the
same portion used in the binary classification experiments
for automatic classifiers as detailed below.

The four annotators had accuracies of 71.0%, 74.6%, 75.4%
and 100.0% (p < 0.001 for each) and improvements over
chance (Ioc) of 31.0%, 39.6%, 41.5% and 100%. Ioc rep-
resents how many fewer errors an annotator is expected to
have versus a chance annotation and is defined as (Ao −
Ae)/(1−Ae), where Ae is expected accuracy by chance. We
attribute the perfect performance of the the fourth anno-
tator to the extra diligence and time this annotator took
compared to the others, and feel it supports the validity
of the ground truth. An inter-coder agreement coefficient
of 0.524, indicating “moderate agreement”, was measured
among all annotators using Fleiss’s kappa [13, 24]. Inter-
coder agreement between all possible pairs of annotators
was also measured using Scott’s pi and varied from 0.396
(“fair agreement”) to 0.658 (“substantial agreement”) [34,
24]. We feel the overall classification success, improvements
over chance and annotator agreement validate the class of
“politically persuasive” videos as coherent and classifiable.

4. EXPERIMENTS

4.1 Experimental Setup
The same setup involving 138 videos (80 positive, 58 neg-

ative) was used for each automatic classification experiment.
In order to ensure that any results were not influenced by
the larger size of the positive class and to ensure that a ran-
dom classifier would have a classification accuracy of 50%,
we randomly sample 58 positive videos from the group of
80 to create a set of 116 videos with an equal number of
positive and negative samples. We then classify these 116
videos using 10-fold cross-validation. This random sampling
was performed 25 times for each of the modalities listed
below, and final results displayed represent the mean and
standard deviation of the accuracy over 25 such randomized
runs of 10-fold cross validation. For each modality, an RBF
SVM classifier was used to perform the final binary classi-
fication task. Details on preprocessing and extraction for
each modality follow.

4.2 Classification via Audio Analysis
We first investigated the use of the audio content in the

videos to distinguish between persuasive and non-persuasive
videos. Politically persuasive videos are often characterized
by animated speakers, charged content, crowd response and
occasional music. Hence, detecting these audio categories
would enable us to identify persuasive videos. In order to
do so, we use the audio concept detection approach of [9],
which we briefly describe in Section 4.2.1.

4.2.1 Audio Concept Detection
Following the work of [9], we detect the following audio

concepts: Crowd, Music + Crowd, Music, Music + Speech,
Crowd + Speech, Calm Speech, Slightly Agitated Speech, Agi-
tated Speech, Very Agitated Speech. To do so, we first extract
a low level feature vector (either prosody, MFCC, or spectro-
gram based) for each frame of audio using a sliding window
approach. Since a single concept label will very rarely apply
to an entire audio track, we apply an algorithm based on
the unsupervised Simple Linear Iterative Clustering (SLIC)
algorithm for image segmentation [2]. The algorithm was
adapted for audio and temporally segments the track into a
set of homogenous segments likely to contain a single con-
cept. The approach has been shown to work well for seman-
tic concepts on the CCV dataset [19] as well as for affective
concepts on the RAC dataset. The low level features for each
segment are then encoded into a bag-of-words representation
and used to train a non-linear SVM for concept detection.
Note that these concept detectors are trained and tested on
a disjoint “control” portion the RAC dataset comprised of
52 positive and 40 negative samples. No video was used to
create both the concept detectors and the classifiers.

4.2.2 Binary Classifier Setup
Given a set of n videos V = {V1, V2, V3, . . . , Vn} and their

corresponding binary labels {y1, y2, y3, . . . , yn} that indicate
whether the video contains persuasive content, we trained a
politically persuasive versus non-persuasive classifier as fol-
lows. For each video Vi, we segment the audio and then com-
pute the concept scores as described above. We denote the
audio concept scores for video Vi as Oi, where i denotes the
video index. The dimensionality of an audio concept score
Oi is T ×C, where T is the number of segments (dependent
on the length of the video and segmentation behavior) and
C is the number of audio concepts (fixed at 9). We quantize
Oi by linearly resizing it to Tfixed ×C, where Tfixed = 100,



to obtain Ōi. Now corresponding to each video Vi we have
a fixed dimensional feature Ōi. We train an RBF SVM on
this data for classification.

This process was performed separately for each of the
three low level features (prosody, MFCC, or spectrogram)
and the results for each are shown below. Additionally, the
three feature types were combined using a Multiple Kernel
Learning (MKL) approach [4]. The process was also re-
peated for using three different temporal scales for the SLIC
segmentation algorithm, but very little performance differ-
ence was observed between them. The results shown below
correspond to a medium scale segmentation.

4.2.3 Results
Following the experimental setup detailed in 4.1, we achieve

the results shown below in Table 1. The results indicate that
using audio features one can perform reasonably well at de-
tecting persuasive content, and that the spectrogram feature
performed best among the possible low level feature types.

Audio Concept Features Classification Accuracy

Prosody 77.82 ± 12.79
MFCC 73.64 ± 12.17
Spectrogram 81.03 ± 11.93
All Features (MKL) 78.65 ± 11.76

Table 1: SVM classification performance using the audio
concept detection features. The margins represent the stan-
dard deviations across 25 randomized runs.

4.2.4 Analysis of Results
In order to better understand what the classifiers were

learning for distinguishing between the persuasive and non-
persuasive videos, we looked at the mean features Ōi from
the persuasive and non-persuasive videos (Figure 2). The
figures show that persuasive videos contain a stronger re-
sponse for crowd and agitated speech. On the other hand,
non-persuasive videos contain a stronger response for calm
speech and slightly agitated speech. Considering the charged
content and oratory of many of the persuasive videos, this
matched our intuition of how the content would be dis-
tributed. Finally, we believe that the concept scores com-
puted from the spectrogram features lead to the best results
because they detect the relevant concepts such as crowd and
agitated speech more accurately compared to other features
leading to superior results on the classification task.

4.3 Video Analysis
In this subsection, we investigate the use of concepts based

on visual content that could be used to differentiate between
persuasive and non-persuasive videos. Persuasive videos
from the RAC dataset often contain rousing visuals ranging
from cheering crowds and heroic figures to images of graphic
violence. Overall, the visuals are more striking and extreme
than the non-persuasive content, and hence visual features
may be useful to identify persuasive content. We primarily
focus on deep learning based features that identify seman-
tic concepts and sentiment. Recently deep learning models
such as Convolutional Neural Networks (CNNs) have be-
come extremely popular for learning image representations
[23]. CNNs, loosely inspired by human vision, are variants of
multilayer perceptrons consisting of multiple convolutional
and pooling layers followed by fully connected layers [25]. In
our work, we implemented a standard network [23] using the
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Figure 2: Mean concept detection scores for positive and
negative videos. Notice that positive videos tend to have a
higher scores for crowd and agitated speech, while negative
videos have higher scores for calm speech and slightly agitated
speech. (Best viewed in color - red/yellow indicate higher
scores and blue indicates lower scores.)

popular open source framework CAFFE [18] to extract vi-
sual features. We trained two different networks using differ-
ent datasets. The first network was trained on the ImageNet
dataset [12] and the second was trained on the Visual Sen-
timent Ontology dataset [5]. We next describe each of these
processes along with the obtained experimental results.

4.3.1 ImageNet Concepts
In this case, we want to evaluate whether the presence or

absence of certain semantic concepts in the video indicates
the presence of persuasive content. In order to estimate the
presence or absence of concepts in an image we use the CNN
trained on the ILSVRC-2012 dataset which is a subset of
ImageNet, consisting of around 1.2 million images labeled
with 1000 different classes ranging from elephant to space
shuttle to stethoscope. The network was trained to maxi-
mize the multinomial logistic regression objective for these
classes over the training data. We use this 1000 dimensional
output as a feature indicating the presence or absence of
each class. We also use the outputs of intermediate network
layers - which represent more abstract visual features than
the final concept outputs and can often provide high classi-
fication performance - as features. These three features are
referred to as“prob”, “fc7”and“fc8”respectively. We extract
each of these features from every 30th frame (1 sec.) of the
video. As in case of the audio data we now have a vector
of dimension F x D (where F is the number of frames sam-
pled) and D is the dimensionality (1000 in case of the prob
and 4096 in case of “fc7” and “fc8”). Since F varies based on
the length of the video, we linearly resize our feature vec-
tor to Ffixed ×D, where Ffixed = 100, much like was done
for audio in section 4.2.2. Each of the three features were
provided individually to an RBF SVM based classifier, and
all features were also combined by concatenation. We follow



the same experimental protocol as in the earlier experiments
described in section 4.2.3. The results are shown in Table 2.

Features Classification Accuracy

prob 68.52 ± 3.62
fc8 67.61 ± 3.97
fc7 69.62 ± 4.48
All Features 71.81 ± 5.37

Table 2: Classification performance using different features
extracted from the CNN network trained on ILSVRC-2012
dataset [12] for recognizing object categories. “prob” refers
to the final concept output scores, whereas “fc7” and “fc8”
are scores for features from intermediate layers of the CNN.

Classification using each of the features significantly out-
performs chance (p < 0.001 for each), indicating that visual
information is indeed useful for detecting persuasive con-
tent. We can also see that the features from the “fc7” layer -
which contain more abstract, learned features - outperform
the features from the “fc8” and “prob” layers indicating the
utility of these over the more specific final concepts. Finally,
we can also see that combining the features from all of the
layers results in a modest improvement in the performance.

4.3.2 Visual Sentiment Ontology Concepts
In this case, we want to evaluate whether the presence or

absence of certain visual sentiment concepts in a video can
provide information on whether the video contains persua-
sive content. In order to evaluate this we use the Visual
Sentiment Ontology dataset [5] which consists of approxi-
mately 930k images. This dataset was collected by searching
Flickr for Adjective-Noun-Pairs (ANPs) such as “beautiful
flower” or “disgusting food”. The advantage of using these
ANPs is that they relate particular images of sentiment neu-
tral nouns (e.g “flower”) to a strong sentiment by adding an
adjective (e.g. “beautiful flower”). Thus the concepts cap-
ture both semantic and sentiment information. We used the
latest version of Visual Sentiment Ontology DeepSentiBank
[8] which consists of CNN based concept detectors for 2089
ANPs. These concept detectors are trained using the same
deep learning network [23] described above. As in the earlier
case, we use the final “prob” outputs as well as the interme-
diate layer outputs “fc7” and “fc8” as inputs to our classifier.
The results are shown in table 3. Here again we can see
that the intermediate layers “fc7” and “fc8” perform better
than the final outputs (“prob”). The performance of the
SentiBank concepts is slightly better than the performance
of the ImageNet concepts, which could be due to use of sen-
timent in the concepts, or just due to the higher number of
concepts present in the SentiBank dataset. Finally, we also
looked at combining the features from the ImageNet con-
cepts and the SentiBank concepts, but this did not lead to
any meaningful increase in performance.

Features Classification Accuracy

prob 68.46 ± 3.61
fc8 72.40 ± 2.76
fc7 73.95 ± 2.95
All Features 73.13 ± 3.01

Table 3: Classification performance using different features
extracted from the CNN network trained on the Visual Sen-
timent Ontology dataset [5] for recognizing visual sentiment.
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Figure 3: The distribution of the number of comments across
the videos in the dataset.

4.3.3 Analysis of Results
Ideally, highly scored concepts in positive videos could be

used to explain why a video was classified as politically per-
suasive. In practice we noted a mix of accurate and relevant
concepts (e.g. “bad guy” in a violent video) along with con-
cepts that seemed irrelevant. Moreover, we noted that the
classification was more accurate using intermediate features
than the high level concepts. Thus while the visual concepts
are effective for classification, in order to explain classifica-
tion, a more specific set of visual concepts would need to be
used, or detection would need to be improved.

4.4 Text Analysis
We also investigated the use of text associated with the

videos, in particular viewer comments. Videos uploaded to
YouTube and other video-sharing sites often generate a large
number of comments posted by viewers across the world,
and many of these comments contain reactions of people
to the videos. Intuitively comments generated in response
to politically persuasive videos should be of a more polar-
ized nature while other videos generate comments of a more
neutral or positive nature. Therefore, exploiting the sen-
timents contained within these contents should provide us
with additional information as to whether the video contains
politically persuasive content.

Given a YouTube video we extract all of the associated
comments using the YouTube API. The number of com-
ments for to each video varies greatly (Figure 3). Since our
videos comprise a geographically diverse range of topics and
speakers, many of the comments to some of these videos are
in languages other than English. As a pre-processing step
we automatically filter out non-English text. In order to
do so we use a simple approach of counting the proportion
of the words in each comment that are present in a dictio-
nary learnt from a standard English text corpus [36]. De-
spite its simplicity, we empirically found that this approach
worked well for filtering out non-English text in YouTube
comments, regardless of the character set of the comments
or any spelling or compositional errors. To then detect the
sentiment of each comment, we experimented with two dif-
ferent approaches as described below.

SATSVM: We refer to the approach in [29] as Sentiment
Analysis of Tweets using SVMs (SATSVM). SATSVM has
been specifically developed for social media data such as
tweets and so it is appropriate for our data. The approach
relies on extracting a number of features from each comment
and training an SVM to classify the comment as having a
positive or negative sentiment. We implement a simplified



version of this approach and instead of using the binary SVM
outputs, we use the SVM decision scores which roughly indi-
cate the degree of positivity or negativity in the sentiment.

DeepCompositionalModel: We refer to the sentiment
detection approach presented in [35] as the DeepComposi-
tionalModel. It uses a Recursive Neural Tensor Network
to build a representation of sentences based on their struc-
ture and computes sentiment by accounting for how the con-
stituent words compose with each other. Unlike SATSVM,
the DeepCompositionalModel splits each comment into its
sentences and assigns a separate sentiment score to each sen-
tence. Its output is a 5 dimensional probability vector indi-
cating the probability of the sentence being Strongly Nega-
tive, Negative, Neutral, Positive or Strongly Positive.

4.4.1 Detecting Persuasion based on Sentiment
Given a video Vi and the set of associated comments Ci

consisting of N individual comments {ci1, ci2, ci3, . . . ciN},
we run SATSVM on each element of Ci to get a set of
N scores {xi1, xi2, xi3, . . . xiN} normalized within the range
[−1, 1]. We then quantize these scores by binning them
into a histogram consisting of eleven equally spaced bins.
Using this technique, each video Vi can be represented by
a fixed dimensional histogram Hi. We train a RBF SVM
using these histogram features for classifiying videos into
persuasive versus non-persuasive. The classification results
are shown in Table 4.

Similarly, when using the DeepCompositionalModel, we
extract the sentiment for each comment {ci1, ci2, ci3, . . . ciN}
obtaining Xi = {xi1,xi2,xi3, . . .xiM}, where M(> N) is the
total number of sentences. (Each comment is split into one
or more sentences.) Each xij is a 5 dimensional probabil-
ity vector as described above. Each video Vi is now repre-
sented by a set of these features Xi. We train an SVM using
a pyramid match kernel [15], which has been shown to be
very effective for learning with sets of features, for classify-
ing these videos. The results are shown in Table 4. From
the results we can see that both SATSVM and DeepCompo-
sitionalModel perform similarly and are significantly better
than random (p < 0.001 for each).

Approach Classification Accuracy

SATSVM 69.52 ± 4.31
DeepCompositionalModel 69.94 ± 3.98

Table 4: Performance using sentiment features extracted
from SATSVM [29] and DeepCompositionalModel [35].

4.4.2 Analysis of Results
We now try and analyze some of the results in an attempt

to understand how sentiment analysis helps in detecting per-
suasive videos. To analyze the results from SATSVM, we
looked at the mean normalized histogram of the positive as
well as the negative videos. The histograms in Fig. 4 show
that politically persuasive videos contain a higher propor-
tion of negative comments than the non-persuasive videos.

We plot similar histograms for the sentiment detection
results obtained from DeepCompositionalModel (Fig. 5).
Here we can see that persuasive videos have a larger pro-
portion of negative comments compared to non-persuasive
videos. Therefore we can see that while the two sentiment
extraction approaches result in different distributions, they
tend to support the hypothesis that persuasive videos lead
to more negative and fewer positive comments when com-
pared to non-persuasive videos and we can use this to help

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

Sentiment Polarity

P
ro
p
o
rt
io
n
o
f
C
o
m
m
en
ts Persuasive

non−Persuasive

Figure 4: Mean sentiment histograms for the politically per-
suasive and non-persuasive videos based on SATSVM [29].
Persuasive videos tend to have a higher proportion of nega-
tive comments (bin ‘-0.2’).
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Figure 5: Mean sentiment histograms for the politically per-
suasive and non-persuasive videos based on the DeepCom-
positionalModel [35]. Persuasive videos tend to have a lower
proportion of positive comments (bin ‘Pos.’).

automatically distinguish between politically persuasive and
non-persuasive videos.

4.5 Multimodal Fusion
We next looked at fusing the information from the audio,

visual and text modalities. We believe that these modali-
ties contain complementary information and therefore fus-
ing them should boost the overall classification performance.
For fusion we considered three different fusion strategies -
Early Fusion, Simple Late Fusion and Learning based Late
Fusion. For the purpose of fusion, we use the spectrogram
features for audio (Table 1), the“fc7”features from the senti-
ment ontology for video (Table 3) and the SATSVM features
for text (Table 4). In case of Early Fusion we simply con-
catenate the features from all of the modalities and train
a RBF SVM for classification. In Simple Late Fusion, we
add up the decision scores obtained from each modality to
arrive at a composite decision score to perform classifica-
tion. For Learning based Late Fusion, we train a logistic
regression based fusion that combines the decision scores
from each modality in a weighted manner. The results are
shown in Table 5 and they demonstrate that fusion tends to
improve classification results over the individual modalities
and late fusion is more effective than early fusion. Further-
more, Learning based Late Fusion leads to further perfor-
mance gains over Simple Late Fusion.

4.5.1 Significance of Multimodal Approach



Modality Classification Accuracy

Audio 81.03 ± 11.93
Video 73.13 ± 3.01
Text 69.52 ± 2.31
Early Fusion 81.37 ± 1.47
Simple Late Fusion 83.32 ± 3.40
Learning based Late Fusion 85.09 ± 1.83

Table 5: Classification performance on the RAC dataset us-
ing different fusion techniques.
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Figure 6: ROC curves for each modality.

In order to further compare the performance of different
modalities and establish the significance of a multimodal
approach over individual modalities, ROC curves and cor-
responding statistics were computed for each modality as
well as learning based late fusion. The ROC curves for each
modality are shown in Figure 6 and were derived from the
mean rankings of samples over multiple randomized exper-
iments as noted in Section 4.1. For each ROC curve the
area under the curve (AUC) was computed, and for each
possible pair of ROC curves the p-value was computed for
the difference between them. Since our AUCs values are
computed on the same underlying set of samples, we chose
the method of [11] to compute p-values, as it accounts for
the correlated nature of data generated from pairs of tests
performed on the same samples. A significance threshold of
95% (p < 0.05) for this null-hypothesis test was chosen to
determine if a performance gain was significant. Using this
criteria, the performance gain of the learning based late fu-
sion approach over every individual modality was significant;
the corresponding p-values are shown in Figure 6. However,
the performance differences between individual modalities
all failed to meet this threshold. These statistics strongly
suggest that fusion of multiple modalities leads to a statis-
tically significant improvement in results.

Additionally, the Ioc statistic (as defined in 3.1) for typical
performance of each modality was computed. We note that
for this statistic, the fusion approach outperformed 3 of the
4 human annotators.

4.6 Predicting Viewer Response

Modality AUC p-Value Ioc

Audio 0.873 p = 0.02 62.1%
Video 0.801 p < 0.01 46.3%
Text 0.828 p = 0.03 39.0%
Fusion 0.919 (n/a) 70.2%

Table 6: AUC values, p-values for the difference versus fu-
sion AUC, and improvement-over-chance statistics

Finally, we investigated the prediction of viewer response
to a video. Our goal here is to see whether given a video’s
audio-visual content, can we predict the sentiment polarity
of the comments posted in response to it. In order to do so,
we first clustered the test videos based on their sentiment
histograms Hi (subsection 4.4), computed using SATSVM
[29], in an unsupervised manner. We set the number of clus-
ters to two, partitioning the set of test videos into two clus-
ters that roughly correspond to videos that generated a posi-
tive response and videos that generated a negative response.
Also note that while these clusters roughly map to the per-
suasive and non-persuasive classes, the correspondence is not
exact. We treat this as a supervised classification problem,
using the cluster indices as the class labels, which correspond
to videos generating a positive and negative response. As
features, we use the spectrogram features for audio (Table
1) and the “fc7” features from the sentiment ontology for
video (Table 3). We train non-linear SVMs for classification
based on unimodal features and a logistic-regression based
late-fusion for multimodal fusion. The results are shown in
Table 7. The results show that we can predict the viewer re-
sponse in advance based on just the extracted audio-visual
content with a reasonable degree of accuracy (random ac-
curacy is 50%). Furthermore, fusing the audio and visual
modalities leads to an increase in performance.

Modality Classification Accuracy

Audio 61.97 ± 7.26
Video 61.67 ± 8.83
Learning based Late Fusion 64.69 ± 4.63

Table 7: Classification performance for predicting the viewer
response on the RAC dataset.

5. CONCLUSION
We have demonstrated that affective and semantic audio

and visual concepts as well as sentiment measures on viewer
comments are effective at predicting whether a video con-
tains politically persuasive content. Notably, the best auto-
matic classification approach generally outperforms human
annotators. Individually, audio concepts are the best pre-
dictors, while a fusion of these modalities produces the best
results, indicating that each contains some complementary
information to the others. Both visual and audio features
are also predictive of negatively polarized comments, allow-
ing us to potentially predict the viewer response to a video
before comments are left. There are several possible areas
for future work. For instance, an attempt to try to iden-
tify new videos with politically charged content as they are
posted could be based on this approach, or a similarly tai-
lored approach could be applied to other specific types of
content besides politically persuasive videos.1

1This material is based upon work sponsored by the Defense
Advanced Projects Agency under the U.S. Army Research
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