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ABSTRACT
We present a novel application for searching for vehicles in
surveillance videos based on semantic attributes. At the in-
terface, the user specifies a set of vehicle characteristics (such
as color, direction of travel, speed, length, height, etc.) and
the system automatically retrieves video events that match
the provided description. A key differentiating aspect of
our system is the ability to handle challenging urban con-
ditions such as high volumes of activity and environmental
factors. This is achieved through a novel multi-view vehicle
detection approach which relies on what we call motionlet
classifiers, i.e. classifiers that are learned with vehicle sam-
ples clustered in the motion configuration space. We employ
massively parallel feature selection to learn compact and ac-
curate motionlet detectors. Moreover, in order to deal with
different vehicle types (buses, trucks, SUVs, cars), we learn
the motionlet detectors in a shape-free appearance space,
where all training samples are resized to the same aspect
ratio, and then during test time the aspect ratio of the slid-
ing window is changed to allow the detection of different
vehicle types. Once a vehicle is detected and tracked over
the video, fine-grained attributes are extracted and ingested
into a database to allow future search queries such as “Show
me all blue trucks larger than 7ft length traveling at high
speed northbound last Saturday, from 2pm to 5pm”.
See video demos of our system at:
http://rogerioferis.com/ICMR2011/

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Appli-
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1. INTRODUCTION
Searching for suspicious vehicles is a common and impor-

tant task in criminal investigation processes. Eyewitnesses
are typically asked by the police to fill out a vehicle de-
scription form, where they indicate the characteristics of
the vehicle as seen at the moment of a suspicious activity
or when a crime was committed. Those include direction of
travel, license plate number, color, size, speed, body shape,
wheel covers, decals, damages, presence of features such as
sunroof, etc. Based on that description,the police manually
scan the entire video archive looking for vehicles with similar
characteristics. This process is tedious and time consuming.

Our goal in this paper is to automate this process by pro-
viding a vehicle search system based on semantic attributes.
Our current implementation allows the user to search for ve-
hicles based on color, size, length, width, height, speed, di-
rection of travel, date/time, and location, but many more at-
tributes could be considered, including measurements from
non-visual sensors. Previous solutions have generally relied
on license plate recognition [1] or vehicle classification [15,
12], which may not be effective for low-resolution cameras or
when the plate number is not available. Instead we provide
a complementary search framework based on fine-grained
attributes. In addition to searching for suspicious vehicles,
our system could also be used in other applications. For
instance, transportation agencies are interested in finding
trucks with a length or height larger than the permitted sizes
in specific highways. There is also interest in correlating vi-
sual vehicle attributes with carbon emission measurements
obtained from other sensors. Search based on attributes
may also help identifying specific vehicles, e.g., DHL trucks
or taxis can be often identified based on their color and size.

A key innovative aspect of our work is the ability to han-
dle challenging urban conditions such as crowded scenes and
lighting changes. Traditional surveillance systems based on
background modeling [17, 8] generally fail to segment ve-
hicles in crowds, as multiple vehicles tend to get clustered
into a single motion blob. We propose a multi-view detec-
tion system that relies on a set of motionlet classifiers, which
consist of detectors learned with vehicle samples clustered
in the motion configuration space. Each detector is learned



Figure 1: System architecture. At the interface, the
user specifies a set of vehicle attributes (vehicle de-
scription form) and the system retrieves the events
matching the provided description. Our system is
designed to handle high volumes of activity.

by using massively parallel feature selection of local descrip-
tors. In addition, multiple types of vehicles, such as buses,
trucks, SUVs, and compact cars can be detected with our
approach by training the motionlet detectors in a shape-free
appearance space, where all training images are resized to
the same aspect ratio. At test time, the aspect ratio of the
sliding window is changed to detect multiple vehicle types.

Once vehicles have been detected and tracked, attributes
are extracted and ingested into a database. In particular,
measurements such as speed, width, height, and length of
vehicles are converted to world coordinates through a sim-
ple calibration process, thus allowing search across cam-
eras without perspective issues. Figure 1 shows a high-level
overview of the architecture of our system

Summarizing, the key contributions of our paper are 1)
a novel application for vehicle search in urban/crowded en-
vironments based on fine-grained semantic attributes and
2) a novel multi-view vehicle detection approach based on
motionlet detectors which are learned in a shape-free ap-
pearance space with large-scale feature selection. We have
implemented a complete system which has been deployed in
several cities worldwide
(see http://rogerioferis.com/ICMR2011/InterfaceAndOperation.

wmv).

2. RELATED WORK
In the past few years, semantic attributes have received re-

newed attention in the computer vision community, provid-
ing effective high-level object representations for a variety of
applications, including zero-shot recognition [10, 5], face ver-
ification [9], and people search [20]. Although semantic con-
cepts and attributes have been inherently present in image

retrieval, scene classification, and broadcast video search, we
are not aware of any surveillance system capable of searching
for vehicles based on their fine-grained attributes.

Most commercial surveillance systems rely on background
modeling for detection of moving objects, in particular vehi-
cles. However they fail to handle crowded scenes as multiple
objects close to each other are often merged into a single
motion blob. Environmental factors such as shadow effects,
rain, snow, etc. also cause issues for object segmentation.

Appearance-based object detectors based on e.g., Adaboost
Learning [21, 22] or SVMs [4] are more robust to crowds and
environmental factors. A major challenge for these methods
is how to deal with highly non-linear appearance changes
in the training set, mainly introduced by object pose vari-
ations. Previous solutions that address this problem usu-
ally split the training data based on appearance clustering
[22, 11]. Although tree-based architectures can improve ef-
ficiency, these techniques are relatively slow at test time
as multiple detectors need to be applied. Small partitions
can also lead to overfitting. More recently, Bourdev et al.
proposed poselet detectors [2] which are trained with data
clustered in the 3D pose configuration space. The clusters
therefore contain semantic information and can be used to
simultaneously detect objects and estimate their 3D pose
configuration. The pose information in the training data,
however, has to be manually annotated. In contrast, our
approach based on motionlets automatically splits the train-
ing data according to motion clusters and offers advantages
in terms of efficiency and accuracy at test time.

Another drawback of current appearance-based detectors
is their limited ability to handle multiple vehicle types (buses,
SUVs, etc.). The reason being that, at test time these tech-
niques employ a sliding window with fixed aspect ratio and
therefore cannot provide the precise width and height of
different vehicle types. An alternative solution is to train
separate detectors for multiple vehicle classes, but the num-
ber of classes can be large and many samples per class are
required to avoid overfitting. Deformable part-based ob-
ject detectors [6] allow deformable bounding boxes and have
recently achieved state-of-the-art results in various object
categories. However they are not suitable for low resolu-
tion images and not efficient to be used in real surveillance
deployments which may require many video channels to be
processed per server. Our approach learns to detect multi-
ple vehicle types in a single appearance space, while running
at more than 60Hz on conventional machines. We use the
term shape-free appearance space to denote the image space
of objects with the same aspect ratio, without taking into
account their detailed shape outlines as in Active Appear-
ance Models [3].

A vehicle detection system with similar efficiency as ours
was proposed in [7]. However, in this work only view-dependent
classifiers are trained and the method fails to detect large
vehicles such as buses or trucks. Our approach differs in
the application itself, the use of motionlets, the ability to
detect multiple vehicle types, and the estimation of their
dimensions in world coordinates.

Large-scale learning is an emerging research topic in com-
puter vision and multimedia. Recent methods have been
proposed to deal with a large number of object classes [16]
and large amounts of data. In contrast, our approach deals
with large-scale feature selection, showing that a huge amount
of local descriptors over multiple feature planes coupled with



Figure 2: (a) The training set is automatically split
into clusters of vehicles with similar motion direc-
tion (motionlets). (b) Artificially generated sam-
ples with occlusions are added to the training data
to enhance the performance in crowded scenes. (c)
At test time, the motion direction of a particular
image patch is used to select specific motionlet clas-
sifiers which determine whether a vehicle is present
or not.

parallel machine learning algorithms can improve not only
the accuracy of motionlet detectors, but also their efficiency
at test time.

3. CAPTURING VEHICLES IN CROWDED
ENVIRONMENTS

In this section we describe our method for multi-view ve-
hicle detection, which is designed to work well in typical
urban surveillance environments - involving crowds, lighting
changes, and different vehicle types, while running at high
frame rates.

3.1 Training Data
We have collected a huge training set of images contain-

ing nearly one million vehicles of different types, multiple
lighting conditions, and many different poses. The data was
captured from a set of city surveillance cameras using a
semi-automatic approach: motion blobs in the input videos
are initially detected via background modeling [18] and the
blobs in a user-defined region of interest having an accept-
able size, aspect ratio, and direction of motion are automat-
ically added to the training set. Then false positives are
manually removed. Each training image in the dataset con-
tains the associated motion direction of the vehicle (obtained
through optical flow).

We use the term motionlet to describe a set of images clus-
tered in the motion configuration space, i.e., images contain-
ing vehicles with similar motion direction. As shown in Fig-
ure 2a, we automatically split the training set into 12 clus-

Figure 3: Motionlet detectors are learned using fea-
ture selection over multiple feature planes. A fea-
ture pool containing a huge set (order of millions)
of feature configurations is generated.

ters/motionlets. Since vehicles are rigid objects and move
along their longitudinal axis, each motionlet is semantically
related to the vehicle pose information. We used standard
2D optical flow to determine motion direction, but 3D meth-
ods such as structure from motion could also be applied.

In order to better deal with occlusions, which are common
in crowded scenarios, we artificially generated more samples
by synthetically creating images of vehicles occluding each
other using Poisson image editing [14] (Figure 2b). Finally,
we resize all training images so that they have the same
aspect ratio - in our implementation, 24x24 pixels. This
way we can model only the appearance of all vehicle types
irrespective of their sizes. The set of resized images therefore
belongs to what we call a shape-free appearance space, since
the information about aspect ratio is lost (Figure 4a). As we
will see in Section 3.3, the aspect ratio of the sliding window
is varied at test time to detect multiple vehicle types.

3.2 Large-Scale Motionlet Detectors
For each motionlet, we learn a detector based on a varia-

tion of Adaboost learning [21] and call it a motionlet detec-
tor/classifier. The learning process for a particular motion-
let receives as input a set of positive images, i.e. 24x24 ve-
hicle images with similar motion direction, a set of negative
images, which are 24x24 non-vehicle image patches obtained
from around 1000 background images, and produces a classi-
fier that separates vehicles from non-vehicles. In our imple-
mentation, we have learned 12 motionlet detectors covering
12 motion directions, but more or fewer motionlets could be
considered depending on the amount of training data.

Our learning algorithm is similar to the cascaded Ad-
aboost classifiers proposed by Viola and Jones [21]. The
novel aspect is the introduction of multiple feature planes in
the feature selection process, as shown in Figure 3. By con-
sidering feature planes such as red, green, and blue channels,
gradient magnitude, Local Binary Patterns, and many oth-
ers, we allow the final motionlet detector to be much more
powerful, combining Haar-like features of different modali-
ties. In this framework, feature selection is performed over
a pool containing a huge set (potentially millions) of feature
configurations. This poses a serious problem in terms of
training time, as even with a single feature plane and a few
thousand images Adaboost training takes days on a stan-



Figure 4: (a) Training images containing multiple vehicle types are resized to have the same aspect ratio.
(b) At test time, the aspect ratio of the sliding window is changed to enable the detection of various types of
vehicles such as buses, trucks and compact cars.

dard desktop machine. Therefore to deal with a huge pool
of local feature descriptors as we are proposing we need a
way to parallelize training.

Adaboost is inherently sequential [13], making it difficult
to scale in general, but in this particular setup there is a sim-
ple solution: parallelization at the level of features. At each
step during training we have to compute a large number of
features for all training images and select the one that bet-
ter classifies the data; this can be done in parallel, with each
CPU working on a subset of the features, and the amount
of synchronization necessary is minimal: each CPU has to
report only the best feature of its subset.

Additionally, at each stage a set of negative patches has to
be selected from the set of available negative images. The
selected patches are the ones for which the current classi-
fier fails. This is the most time consuming activity in later
stages of the cascade training, taking hours even for a small
training set. Parallelization can also be implemented here,
with each CPU searching for negative patches in a different
subset of the negative images. Again, the amount of time
spent on synchronization1 here is comparatively very small,
allowing for an almost linear speed-up with the number of
CPUs employed.

So far in our implementation we have considered paral-
lel feature selection over four color planes (gray-scale, red,
green, and blue channels). As we will show in the exper-
imental section, by adding color we not only improve the
robustness of the classifier but also get a sparser solution,
with a smaller number of selected features. That, in turn, re-
duces computation time during inference. We are currently
adding more feature planes (gradients and texture descrip-
tors, multispectral planes, etc.), which should improve re-
sults even more.

3.3 Vehicle Detection and Tracking
In the previous sections, we described the training data

preparation and the learning algorithm used to train motion-
let detectors, which are offline processes. Now we describe
how we apply the motionlet detectors at runtime.

Given a test video frame, we use the traditional sliding
window approach [21] to detect vehicles. The novel aspect
is that we scan the image not only at multiple positions and
scales, but also allow the search window to deform its shape,

1We used Message Passing Interface (MPI) in our imple-
mentation.

in particular its aspect ratio, as shown in Figure 4b. This
enables the detection of multiple vehicle types, ranging from
large trucks or buses to compact cars. Since our cameras
are fixed, we apply this search scheme only on motion blobs
obtained by background modeling to improve efficiency and
accuracy.

For each search window hypothesis, we extract the mo-
tion direction of the underlying image patch through optical
flow, and use this information to directly select motionlet
classifiers with similar motion direction (Figure 2c). In our
implementation, we selected the top two motionlet detectors
with closest motion direction. Those are applied to the can-
didate image patch and the results are combined by an OR
boolean operator, i.e., if any motionlet detector fires then a
vehicle is detected at that specific image location. As we will
show in our experimental analysis, this approach offers sig-
nificant advantages in terms of accuracy over methods that
avoid non-linearities in the training set through clustering
based on appearance and tree-based architectures.

Assuming fixed surveillance cameras, we capture the struc-
ture of the scene by analyzing the most selected motionlet
classifiers over a period of time. For instance, some scenes
contains vehicles in a single pose, requiring only a single mo-
tionlet to be applied. This analysis allows us to remove the
optical flow computation step at test time and directly ap-
ply the selected motionlet detectors according to the scene
structure, thus improving efficiency. Additionaly, we inter-
leave the selected classifiers across the video frames to obtain
higher frame rates. Our vehicle detection system runs at
more than 60 frames per second, being appropriate for real
surveillance deployments which require many video channels
to be processed per server.

We also need to link the detections of the same vehicle over
the video sequence to avoid indexing attributes of the same
vehicle multiple times. This is accomplished by a simple
correlation-based tracker combined with vehicle detection at
every frame. More specifically, when a vehicle is detected,
the correlation-based tracker is triggered. For the subse-
quent frame, if a vehicle is not detected by any motionlet
classifier, then tracking is performed with the window given
by the correlation tracker. Otherwise, if the vehicle detector
reports a window result with close position and size to the
current tracking window, then this vehicle detection win-
dow result is used to update tracking. This mechanism is
important to avoid drifting.



4. ATTRIBUTE EXTRACTION / SEARCH
For each vehicle track, we extract a set of fine-grained at-

tributes as described below and automatically ingest the at-
tribute metadata into a backend database system through a
web-based service-oriented architecture. SQL event search
queries such as “Show me all blue trucks larger than 7ft
length traveling at high speed northbound last Saturday,
from 2pm to 5pm” can then be placed by the user through a
web-based interface. The interface issues requests to a web
server, where Java servlets receive the information and issue
queries to the database backend. The results are then pre-
sented to the user. Thumbnails of the detected vehicles are
displayed, and the user can click on them to view a video
clip of the selected vehicle. The framework and software ar-
chitecture of our vehicle search system is similar to the IBM
Smart Surveillance Solution [8]. The search interface and a
demonstration of our system in operation can be seen in the
following video:
http://rogerioferis.com/ICMR2011/InterfaceAndOperation.wmv

We currently extract the following metadata and attributes
from vehicle tracks:

Date, Time and Location. We store a timestamp in-
dicating the beginning, end, and duration of a track. In
addition, the information about the camera and its location
in a map is stored, so that the user can search for events in
a particular region of the city covered by certain cameras at
a particular date/time.

Direction of Travel. This information is is implicitly
present in our motionlet classifiers. We currently support
search based on 12 directions. A motion direction histogram
is built for each vehicle track and the direction with larger
number of votes is stored in the database.

Dominant Color. We extract the dominant color for
each vehicle, allowing the user to search for vehicles based
on 6 colors - black, white, red, green, blue, and yellow. The
dominant color is computed by initially converting each in-
put video frame into a bi-conic (hue, saturation, luminance)
HSL space, and then quantizing the HSL space into 6 col-
ors. This quantization is done by computing the hue angular
cutoffs between the colors and, in a second stage, relabeling
pixels as either white or black depending on whether they
lie outside the lightness/saturation curve above or below the
horizontal mid-plane. This is related to earlier work in color
segmentation performed by Tseng and Chang [19]. A cumu-
lative histogram with 6 bins in this quantized space is built
over the vehicle images belonging to a specific track. The
color corresponding to the bin which receives the majority
of votes is then assigned as the dominant color.

Vehicle Dimensions. Our vehicle detection approach
provides a precise bounding box and consequently the width
and height in pixels for various types of vehicles. Pixel mea-
surements, however, are sensitive to perspective, as a small
car can look big if it is close to the camera and the other
way round. We solve this issue by calibrating the scene and
estimating the width, height, and length of vehicles in
world coordinates, as described in next section. We take
the median value for each dimension over the entire vehicle
track and ingest those values in the database.

Speed. Once we have the position of a particular vehicle
in world coordinates at each video frame (see next section),
it is straighforward to compute its speed. We store the av-
erage speed of a vehicle track in the database.

Although our current implementation only considers the

Figure 5: Left: polygonal vehicle model; Center: the
UI for using a 3D cube to obtain the camera cali-
bration matrix; Right: an example of fitted model
to the observed vehicle using the calibration matrix.

above attributes, more attributes such as wheel covers, body
shape, presence of features such as sunroof, etc. could be
considered.

4.1 Estimation of Real-World Features
In many situations like traffic counting and large vehicle

monitoring (e.g., trucks), knowing the actual 3D character-
istics of the vehicles such as width and length are important
and critical. In this section, we present a real-world measur-
ing method utilizing the camera calibration information. In
particular, the 3D dimensions of detected vehicles (width,
height and length) and their real speeds are estimated. To
achieve this, a 3D vehicle model (Figure 5) is incorporated to
represent the actual position and orientation of the vehicle
in real-world.

The camera calibration is achieved by a manual specifi-
cation process, where the user can define a 3D cube, which
is sitting on the ground plane and having edges with equal
length (specified by the user, e.g., 20 ft), through a con-
venient definition interface. The calibration matrix (a 3x4
matrix) is then estimated using the least square fit method
by matching the 3D cube corners with their 2D correspon-
dences in the image plane. The user can also refine the
calibration by visually viewing how well the vehicle model
is projected to the image plane and fitted to an observed
vehicle (Figure 5). Note that in our application, only the
projection matrix is needed. It is not necessary to know the
exact parameters such as camera location, orientation, focal
length, etc. Once the camera calibration matrix is obtained,
it is used to match the 3D vehicle model with the target
object.

In order to correctly project the 3D vehicle model onto the
2D image such that its projection fits the detected vehicle,
three things need to be known for the model: its location on
the ground plane, orientation of heading direction and the
scale of the model. In our estimation process, the location
is initialized as the intersection of the ground plane with
the line that goes through the 2D vehicle centroid and the
camera center (using backward projection). It is further
refined once the other information is known. Assuming there
are prior samples of the same detected vehicle from previous
frames through the tracking process, its heading direction
(denoted as vo) is estimated as the motion vector between its
current 3D location and its previous location on the ground
plane. The vehicle model is then rotated such that it aligns
with this vector. If the vehicle is static, its previous heading
direction will be used. For convenience, its perpendicular
vector is denoted as vT

o .
There are many different types of motor vehicles, such as

sedan, SUV, mini-van, medium truck, 18-wheeler, etc. Ap-
parently, only knowing where the vehicle is located and to



Figure 6: Top Row: projected vehicles before 3D
scaling; Bottom Row: better fitted vehicle models
after proper scaling.

where it is heading to is not sufficient to distinguish which
type of vehicle it is. In this case, the scale of the vehicle must
be estimated to make the correct inference. Here we pro-
vide a straightforward but robust method for approximating
the vehicle scales. Given the bounding box of an observed
vehicle in image, it can be denote as BBh(l, r, t, b), where
(l, r, t, b) are the left, right, top and bottom coordinates of
the bounding box respectively. Similarly, the bounding box
of the 2D projected model can be also obtained and denoted
as BBm(l, r, t, b). The aspect ratio difference between BBH

andBBM in x and y directions are computed as Sx = rh−lh
rm−lm

and Sy = th−bh
tm−bm

. Utilizing the backward projection tech-
nique again, we can find the 3D vector vx on the ground
plane whose 2D projection aligns with the horizontal axis of
the image, and similarly, the 3D vector vy for the vertical
axis of the image. Since these vectors are on the ground
plane, their Y components are dropped. Assuming all the
vectors are unit vectors, the scales in the length SL and
width SW dimensions of the vehicle model can be estimated
as following:{

SL = αL(Sx||(vo · vx)||+ Sy||vo · vy||),
SW = αW (Sx||(vT

o · vx)||+ Sy||vT
o · vy||),

(1)

where || ∗ || represents the absolute value of the vector dot
product, and αL and αW are the normalization factors.
Since the width and height of a vehicle usually are corre-
lated, the scaling factor of model’s height is defined as the
same as SW . Figure 6 shows some example results for 3D
vehicle scaling. With the availability of vehicle’s location,
orientation and scale, its 3D features such as real length,
width, height and speed can be effectively estimated.

5. EXPERIMENTS
For a quantitative analysis of our vehicle detection ap-

proach, we collected a challenging test set from a specific
surveillance camera containing 229 images and 374 vehicles,
mostly in side-view pose. Experimental analysis for other
camera views and other vehicle poses are included as sup-
plementary material at http://rogerioferis.com/ICMR2011/

MoreViews.jpg. The images were captured in different months,
covering different weather conditions incluing sunny and rainy
days, different lighting effects, such as shadows and specu-
larities, and different periods of time such as morning and
evening. In addition, we split our test set into two groups:
high activity, i.e., crowded scenes with many occlusions (104
images and 217 vehicles) and low activity (125 images and
157 vehicles).

We compared three methods in this test set: 1) a baseline
method which learns a tree-based Adaboost vehicle detec-
tor using clustering based on appearance to deal with non-
linearities in the training set, in the same spirit of [22, 11]; 2)

Our proposed motionlet approach where clustering is based
on motion and 3) our motionlet approach using large-scale
feature selection. Figures 7a and 7b show the ROC curves
for crowded and low-activity scenes, respectively. Clearly
our approach based on motionlets offers significant improve-
ment in terms of accuracy over the baseline. In addition,
large-scale feature selection allows the classifier to be sparser
as shown in Figure 7c. Sample detection results for several
cameras can be seen in Figure 8. For a better feeling of how
our method works, we refer the reader to a video demo at:
http://rogerioferis.com/ICMR2011/60HzVehicleDetectionCrowd.

wmv

This particular sequence was obtained from New York De-
partment of Transportation (DoT). It has low-frame rate
and high volumes of activity. Our method captures most
of the vehicles while running at more than 60Hz. Another
video demo showing the detection of multiple vehicle types
in crowded conditions can be seen at:
http://rogerioferis.com/ICMR2011/TruckCarsDetectionCrowd.

wmv

Color retrieval was assessed on the DoT sequence above
from which we automatically captured 2550 vehicles. Figure
9a shows an example of search for yellow vehicles. Note
that in this case all retrieved events are taxi cabs. Figure
9b shows the confusion matrix and the initial distribution of
vehicle colors. The percentage of images correctly classified
is 96.76%. The average classification rate is 90.72%.

Evaluation of measurements such as width, height, length,
and speed is not trivial as it is difficult to obtain the ground
truth. So we provide a simple qualitative analysis by looking
at search results associated with the query ”search for vehi-
cles with length larger than 18ft”, using the same DoT cam-
era used for color retrieval over a period of 30 minutes. A to-
tal of 360 events were retrieved. Figure 10 shows sample re-
sults for this search, including the timestamp and length in-
formation associated with each icon. By visually looking at
the results, discriminating large cars from small cars (clearly
above or below 18 ft), we get 314 large vehicles out of the
360 events that were returned by the search, thus obtaining
87% classification accuracy. The classification errors usu-
ally come from false vehicle detections or wrong bounding
box estimation. Note that traditional surveillance systems
which offer object size search based on background/motion
segmentation fail to handle crowded scenes as multiple small
objects close to each other are merged and considered as a
single large object. The video below shows a demonstration
of our vehicle dimensions estimation in world coordinates:
http://rogerioferis.com/ICMR2011/WorldCoordinates.wmv

Discussion. The robustness of our vehicle detection method
to crowded scenes and different lighting conditions comes
from the data itself - our training dataset contains many
images of vehicles occluding each other and covers many
different weather conditions. The ability to handle multiple
vehicle types comes from our shape-free appearance learning
and varying shape sliding window. Although different types
of vehicles may differ in appearance, they also have many
similar structures, which facilitates learning. The proposed
motionlet approach improves accuracy by clustering sam-
ples based on motion rather than appearance and also the
efficiency, as detectors are directly selected based on motion
information. The motion clusters are determined automati-
cally, contrasting with other view-based methods that need
manual pose annotation. Large-scale feature selection fur-



Figure 7: Comparison of our motionlet approach with a s tree-based Adaboost learning algorithm which uses
clustering based on appearance (baseline). (a) Results on crowded scenes. (b) Results on low-activity scenes.
(c) The motionlet detectors are sparser and therefore more efficient with large-scale feature selection.

Figure 8: Sample detection results in challenging images including crowds, multiple vehicle types, different
lighting conditions and environmental factors such as rain, reflections, and shadows.

ther improves accuracy and sparsity. We have noticed that
several false detections occur in parts of vehicles, so adding
those to the negative training set should improve results.
Other false alarms could be pruned by using calibration in-
formation, i.e., pruning hypothesis that do not satisfy ex-
pected vehicle sizes at specific image positions. Our color
attribute estimation could be improved by using learning
methods to better deal with different lighting conditions.

6. CONCLUSION
We have presented a novel application for attribute-based

vehicle search in urban surveillance scenarios. Our approach
relies on a novel and robust vehicle detection method, fol-
lowed by attribute extraction, tranformation of measure-
ments into world coordinates, and database ingestion/search.
As future work, we plan to extend the set of attributes used
in our implementation, including other visual features and
information from non-visual sensors.
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