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ABSTRACT
We propose a unified framework for image retrieval capa-
ble of handling complex and descriptive queries of multiple
modalities in a scalable manner. A novel aspect of our ap-
proach is that it supports query specification in terms of ob-
jects, attributes and spatial relationships, thereby allowing
for substantially more complex and descriptive queries. We
allow these complex queries to be specified in three different
modalities - images, sketches and structured textual descrip-
tions. Furthermore, we propose a unique multi-modal hash-
ing algorithm capable of mapping queries of different modal-
ities to the same binary representation, enabling efficient
and scalable image retrieval based on multi-modal queries.
Extensive experimental evaluation shows that our approach
outperforms the state-of-the-art image retrieval and hash-
ing techniques on the MSRC and SUN09 datasets by about
100%, while the performance on a dataset of 1M images,
from Flickr, demonstrates its scalability.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database Applications]: Image databases

General Terms
Algorithms, Design

Keywords
Image Retrieval, Multimedia, Image Search, Hashing, Multi-
modal, Semantic Retrieval

1. INTRODUCTION
The amount of visual data such as images and videos avail-

able over the web has increased exponentially over the last
few years and there is a need for developing techniques that
are capable of efficiently organizing, searching and exploit-
ing these massive collections. In order to effectively do so,
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Figure 1: Overview: Our proposed multi-modal image re-
trieval framework. We convert queries of different modalities
(text, sketch and images) into a common semantic represen-
tation. The semantic representations are then mapped to
compact binary codes using a novel multi-modal hashing
approach.

a system, apart from being able to answer simple classi-
fication based questions such as whether a specific object
is present(or absent) in an image, should also be capable
of searching and organizing images based on more complex
descriptive questions. To this end, there have been major
advances in the field of image retrieval in the last few years.
For example, image retrieval has progressed from retrieving
images based on single label queries [1], [7] to multi-label
queries [9] [10], [16], [30] and structured queries [19].

In this work, our goal is to enable a user to search for
images based on complex and descriptive queries that con-
sist of objects, attributes - that describe properties of objects;
and relationships - that specify the relative configuration be-
tween pairs of objects. For example, we would like to search
for images based on a query like “red car to the left of a
yellow car”. Unlike, current retrieval approaches which can
deal with only single label or multi-label queries, our work
allows users to search for images/scenes based on very spe-
cific and complex properties. To the best of our knowledge,
none of the existing image retrieval approaches can handle
such complex and descriptive queries in a scalable manner.

In image retrieval, queries are typically specified using an
image, a sketch or a textual description and almost all cur-
rent image retrieval approaches fall into one of these three
categories. We integrate these approaches by proposing a
joint framework that allows the queries to be specified in
any of these three modalities - i.e. images, sketches or text



(Fig. 1). In the case of image based queries, the user pro-
vides an image as a query and the goal is to retrieve images
that are semantically similar. The query image implicitly
encodes the objects present in the image, their attributes
and the relationships between them. Unlike several other
retrieval approaches [32], [23], [35], [13], we focus on seman-
tic similarity rather than visual similarity. In a sketch based
query, the user draws a very rough sketch (a set of regions)
and explicitly labels each region with object names and/or
attributes, while the locations and spatial relationships are
implicitly encoded. Finally in text based queries, the ob-
jects, attributes and the relationships are explicitly specified
by the user in a pre-defined structured format. However,
building a large scale joint retrieval framework for multiple
query modalities necessitates the ability to perform an effi-
cient nearest neighbor search from a query of each modal-
ity to the elements in the database. Unfortunately, none
of the existing hashing approaches can be used for this pur-
pose. We accomplish this, by proposing a novel Multi-Modal
hashing approach capable of hashing queries and database
elements of different modalities to the same hash code. In
our case the modalities correspond to queries in the form of
images, sketches and text (Fig. 1). Our multi-modal hash-
ing approach consists of a Partial Least Squares (PLS) based
framework [27], which maps queries from multiple modali-
ties to points in a common linear subspace which are then
converted into compact binary strings by a learned similar-
ity preserving mapping. This enables scalable and efficient
image retrieval from queries based on multiple modalities.
See Fig. 1 for an overview.

There are three main contributions of our work: 1) We
propose an approach for image retrieval based on complex
descriptive queries that consist of objects, attributes and
relationships. The ability to define a query by employing
these constructs gives users more expressive power and en-
ables them to search for very specific images/scenes. 2)
We support query specification in three different modali-
ties - images, sketches and text. Each of these modalities
have their own pros and cons - for example, an image query
might be the most informative, but the user might not al-
ways have a query image; a text based query might not be
specific enough, but is easy to compose; a sketch based query
might require a special interface. However, when equipped
with the ability to search based on any of these modali-
ties a user can choose the one that is the most appropriate
for the situation at hand. 3) Finally, to support query-
ing based on multiple query modalities, we propose a novel
multi-modal hashing approach that can map queries of dif-
ferent modalities to the same hash code, enabling efficient
and scalable image retrieval based on multi-modal queries.
While these three contributions from the key ingredients of
our unified and scalable framework for multi-modal image
retrieval, they also lay the foundations of a general multime-
dia retrieval framework with several advantages over existing
systems, e.g. the ability to query a video database using a
complex query comprising multi-modal (audio, video, text)
information.

2. RELATED WORK
Image retrieval can be divided into three categories - im-

age based retrieval, text based retrieval and sketch based re-
trieval - based on the modality of the query. In this work we
propose an approach that integrates these methods within
a single joint framework. We now briefly describe relevant
work in each of these image retrieval categories as well as
relate and contrast our proposed approach to them.

In image based retrieval, the user provides a query in the
form of an image and the goal is to retrieve similar images
from a large database. A popular approach [32], involves uti-
lizing a global image representation such as GIST or Bag-of-
Words (BoW). Augmenting a BoW representation by incor-
porating spatial information has shown to improve retrieval
results significantly [23], [35]. Further improvements have
been obtained by aggregating local descriptors [13] or by us-
ing Fisher kernels [24] as an alternative to BoW. However,
a common drawback of these approaches is that, while they
perform well at retrieving images that are visually very sim-
ilar to the query image (e.g. images of the same scene from a
slightly different viewpoint), they can often retrieve images
that are semantically very different. In contrast, we focus
on retrieving images that are semantically similar to the
query image. This is facilitated by employing an intermedi-
ate representation that encodes the semantic content such
as the objects, their attributes and the spatial relationships
between them.

Text based image retrieval entails retrieving images that
are relevant to a text query, which in its simplest form could
be a single word representing an object category. Early work
in this area includes [1], [7]. Later work such as [9], [10], [16],
[30], allowed for image retrieval based on multi-word queries,
where a word could be an object or a concept as in [9], [10]
or an attribute as in [16],[30]. Our work further builds upon
these methods by providing a user the ability to retrieve
images based on significantly more descriptive text based
queries that consist of objects, attributes that provide addi-
tional descriptions of the objects and relationships between
pairs of objects. While recent approaches such as [15], [6],
do look at the problem of retrieving a relevant image given
a sentence, they primarily focus on the reverse problem -
i.e. producing a semantically and syntactically meaningful
description of a given image.

Sketch based retrieval involves the user drawing a sketch
of a scene and using it to search for images that have similar
properties. An advantage of a sketch based query over text
based queries is that it implicitly encodes the scale and rela-
tive spatial locations of the objects within an image. Initial
approaches in sketch based retrieval include [12], [31], where
the query was a color based sketch and the aim was to re-
trieve images that had a similar spatial distribution of col-
ors. In [34], a sketch-like representation of concepts called
a concept map, is used to search for relevant images. In [2],
Cao et al. proposed an efficient approach for real-time im-
age retrieval from a large database. However, their approach
primarily relies on contours and hence uses information com-
plementary to our method. In the graphics community, peo-
ple have looked at the problem of composing (rather than
retrieving) an image from multiple images given a sketch [3].

Image retrieval based on each of these modalities have dif-
ferent pros and cons and hence we propose a single frame-
work for image retrieval capable of handling multi-modal
queries. While the recently proposed Exemplar-SVM based
approach of Shrivastava et al. [29] can match images across
domains (images, paintings, sketches), a major drawback of
their approach is its scalability - it requires 3 min. to search
through a database of 10000 images on a 200-node cluster,
making it highly impractical for any kind of online image re-
trieval. On the other hand, by virtue of representing queries
and database elements using compact binary strings, we can
search a database of a million images in 0.5 seconds on a sin-
gle core.

Performing image retrieval in a large scale setting requires
scalable approaches for compactly storing the database im-



ages in memory and efficiently searching for images relevant
to the query in real-time. For example, storing 50M images
using a GIST based representation (960D floats) would re-
quire 192GB of memory, but when represented using a 256
bit hash code, the memory requirements drop to a manage-
able 1.6GB. A popular hashing approach consists of employ-
ing locality sensitive hashing (LSH) [5], which uses random
projections to map the data into a binary code, while pre-
serving the input-space distances in the Hamming space.
Given a query, relevant images can be efficiently retrieved
by computing the Hamming distance between the query and
database images. Several recent approaches have also at-
tempted to use the underlying data distribution to compute
more compact codes [26], [25], [14], [33], [8]. However, these
approaches are only applicable to single-modality queries.
Hence, we propose a novel multi-modal hashing approach
which builds upon [8] and allows multiple representations
(modalities) to be mapped to the same binary code. While
the work of Kumar and Udupa [17] is similar to ours, as
it can handle multi-modal queries, we believe that our ap-
proach is superior for two reasons. Firstly, when no prior
cross-modal information is available, [17] reduces to a CCA
embedding. In contrast, our approach is based on a variant
of Partial Least Squares (PLS) that has been shown to be
superior to CCA [27] in the presence of noise. Moreover, we
also apply the Iterative Quantization technique [8] to the
PLS embedding, further improving retrieval performance.
Secondly, we evaluate our approach on modalities(image,
sketches and text) that are far more diverse compared to
the modalities (multilingual corpora) in [17].

3. APPROACH
3.1 Query Representation

We first define a sketch based query. As illustrated in
Fig. 2, a sketch consists of a set of regions drawn by the
user, with each region being labeled by an object class. A
sketch can be thought of as a dense label map, where the un-
labeled portions of the sketch correspond to the background
class. Each region can also be labeled by multiple attributes,
that could specify its color and texture. We use sketches as
our primary form of representation, and convert image and
text based queries into sketches. The principal advantage
of having a single representation is that it enables us to
have a unified framework for multi-modal queries, instead
of having to build a separate pipeline for each query modal-
ity. We choose a sketch based representation over images
or text because a) When compared to images, sketches are
more semantically meaningful and encode a query using hu-
man describable constructs such as objects and attributes.
b) When compared to text based queries, sketches implicitly
encode the scales and locations of different objects and the
spatial relationships between them.

We convert sketches into a semantic representation that
permits easy encoding of the spatial relationships between
the objects in an image. The sketches are converted into Co

binary masks representing each object category (whether it
appears in the sketch or not) and Ca masks representing
each attribute. The binary mask corresponding to the ob-
ject ok has value 1 at pixel (i, j) if the sketch contains the
corresponding object class at pixel (i, j) and similarly for
attributes. These binary masks are then resized to d × d,
leading to each sketch being represented by a vector of di-
mension (Co + Ca)d2. The conversion of a sketch into the
semantic representation is illustrated in Fig. 2. We compare
the semantic similarity between two sketches based on the
L2 distance between their corresponding vector representa-
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Figure 2: Semantic Representation: A sketch based
query is converted into the semantic representation, which
is a concatenation of the binary mask corresponding to each
object and each attribute.

tions and based on the Spatial Pyramid Match [20] similarity
between the corresponding label maps as done in [32].

There are two main advantages of the proposed Seman-
tic Representation over raw feature representations such as
GIST. Firstly it explicitly encodes the scales and locations
of different objects and the spatial relationships between
them. Secondly, as validated by our experiments, the Se-
mantic Representation compactly encodes the semantic con-
tent within an image. Due to these two properties the Se-
mantic Representation is appropriate for supporting com-
plex semantic queries in a large scale setting. Our proposed
semantic representation of objects and attributes bears some
resemblance to the“Object Bank”[21] representation of Li et
al. However, there is an important difference - while they use
sparsity algorithms to tractably exploit the “Object Bank”
representation, we instead leverage existing work on efficient
hashing approaches to enable application of our representa-
tion to large scale problems.

3.2 image2semantic
In order to convert an image into the semantic represen-

tation, we semantically segment the image by assigning an
object label to each pixel. The segmentation is performed
using Semantic Texton Forests (STF) [28]. We choose STFs
over other semantic segmentation approaches primarily for
their speed. Given a query image, STFs enable fast con-
version of the image to the semantic feature representation,
which is critical for real-time image retrieval. Training the
STF involves learning two levels of randomized decision trees
- at the first level a randomized decision tree is learned to
cluster image patches into textons, where each leaf node of
the tree represents a texton. The second level involves learn-
ing multiple decision trees that take into account the layout
and the spatial distribution of the textons to assign an object
label to each pixel. During the test phase, the image patch
surrounding each pixel is simply passed down each tree and
the results of multiple trees are averaged to obtain its ob-
ject label. We direct the reader to [28] for further details of
the approach. We also train STF based attribute classifiers



and segment the image based on attributes. By semanti-
cally segmenting the image using STFs, we obtain the class
and attribute label assignments for each pixel, which we
then convert into the semantic representation, as described
in Section 3.1.

3.3 text2semantic
We now describe our approach for generating a set of plau-

sible semantic sketches relevant to a text based query. We
assume that our text query consists of a set of objects, with
each object being described by zero or more attributes and a
set of zero or more pairwise relationships between each pair
of objects. An example of such a query is “red car to the
left of a yellow car”. We also assume that the text query
has been parsed into its constituent components (see the
supplementary material for details).

Corresponding to each object, we generate a large number
of candidate bounding boxes. A bounding box X is defined
by its scale (sx, sy) and location (x, y). For each object oi
that is part of the query, we generate a set of bounding boxes
Xoi by importance sampling the distribution of the object
class in the training data and assign each bounding box a
probability P (X|ci) (where ci is the class of oi) based on the
training distribution. A candidate sketch of the query can be
created by simply choosing one bounding box corresponding
to each object oi. However, to create semantically plausible
sketches, we use the spatial relationship likelihoods between
pairs of object categories, learned from the training data, as
well as the specific inter-object relationships provided by the
user in the query to generate the set of most likely candidate
sketches. We define the likelihood of a sketch as:

P (Xo1 , Xo2 , ..|o1, o2, ..) ∝ (1)∏
i

P (Xoi |ci)
∏
(j,k)

P (Xoj −Xok |cj , ck)

where Xoi denotes the bounding box corresponding to ob-
ject oi, ci is the object category of object oi and Xoj −Xok

represents the difference in the location and scale of the
bounding boxes Xoj and Xok . The first term in the equa-
tion represents the likelihood of an object of class ci hav-
ing a bounding box Xoi , while the second term restricts
the bounding boxes belonging to the pair of classes cj and
ck from having arbitrary relative locations and scales. The
second term is further decomposed into its constituent com-
ponents (sx, sy, x, y) as the joint distribution is very sparse:

P (∆Xojk |cj , ck) =
∏

P (∆xojk |cj , ck)P (∆yojk |cj , ck) (2)

P (∆sxojk |cj , ck)P (∆syojk
|cj , ck)

where ∆Xojk represents Xoj−Xok for brevity, and similarly
for the individual components.

The contextual relationship model (Eq. 2) is similar to
the one used by [11]. However, unlike [11], where the spatial
relationships are binary, we employ a set of discrete bins to
capture the degree of separation and relative scales between
the objects within an image. We also incorporate informa-
tion about the spatial relationships between a pair of object
classes, contained within the query, into the model. For ex-
ample, if the query states that object oj is above object ok,
we can utilize this information to set P (yoj − yok > 0) = 0
and then renormalize P (yoj−yok |cj , ck), which helps enforce
the relationship constraint.

We generate the set of N(=25) most likely candidate sketches
based on the likelihood model (Eqn. 2) using the technique
proposed by Park and Ramanan [22], which embeds a form
of non-maximal suppression within a sequential loopy belief-
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Figure 3: text2semantic: The top k(=9) sketches for dif-
ferent text based queries consisting of two or three objects
with and without relationship information.

propagation algorithm and results in a relatively varied, but
at the same time highly likely, set of candidate sketches.
Note that a sketch is generated based on the likelihoods
of the object classes alone, the attributes of each object are
then assigned to the corresponding bounding box in the gen-
erated sketch. The candidate sketches for some text queries
are shown in Fig. 3. Here, the unary and pairwise likeli-
hoods are learned from the SUN09 dataset [4].

3.4 Multi-Modal Hashing
We are given a set of n data points, for which we have

two different modalities X = {xi}, i = 1 . . . n, xi ∈ RDx

and Y = {yi}, i = 1 . . . n, yi ∈ RDy . For example, in
our case, X could consist of the semantic representations
computed from the images and Y could be the representa-
tions from the corresponding sketches. In general, we can
have more than two modalities. Our goal is to learn pro-
jection matrices Wx and Wy that can convert the data into
a compact binary code, where the binary code hxi for the
feature vector xi is computed as hxi = sgn(xiWx). Like
most other hashing approaches, we want to learn Wx (and



similarly Wy) that assigns the same binary codes hxi and
hxj to data points xi and xj that are very similar. However,
we also have the additional constraint that an image xi,
and a sketch yj, which are semantically similar, should be
mapped to similar binary codes hxi and hyj by Wx and Wy

respectively. Motivated by the approach of [8], we adopt a
two stage procedure - the first stage involves projecting dif-
ferent modalities of the data to a common low dimensional
linear subspace, while the second stage consists of applying
an orthogonal transformation to the linear subspace so as to
minimize the quantization error when mapping this linear
subspace to a binary code.

We adopt a Partial Least Squares (PLS) based approach
to map different modalities of the data into a common latent
linear subspace. We employ the PLS variant used in [27],
which works by identifying linear projections such that the
covariance between the two modalities of the data in the
projected space is maximized. Let X be an (n×Dx) matrix
containing one modality of the training data X , and Y be an
(n×Dy) matrix containing the corresponding instances from
a different modality of the training data Y. PLS decomposes
X and Y such that:

X = TPT + E

Y = UQT + F

U = TD + H (3)

where T and U are (n × p) matrices containing the p
extracted latent vectors, the (Dx × p) matrix P and the
(Dy × p) matrix Q represent the loadings and the (n×Dx)
matrix E, the (n × Dy) matrix F and the (n × p) matrix
H are the residuals. D is a p × p matrix that relates the
latent scores of X and Y . The PLS method iteratively
constructs projection vectors Wx = {wx1, wx2, . . . , wxp} and
Wy = {wy1, wy2, . . . , wyp} in a greedy manner. Each stage
of the iterative process, involves computing:

[cov(ti, ui)]
2 = max

|wxi|=1,|wyi|=1
[cov(Xwxi, Y wyi)]

2 (4)

where ti and ui are the ith columns of the matrices T
and U respectively, and cov(ti, ui) is the sample covariance
between latent vectors ti and ui. This process is repeated
until the desired number of latent vectors p, have been de-
termined. One can alternatively use CCA instead of PLS,
however we found that PLS outperformed CCA, a conclu-
sion also supported by [27].

PLS produces the projection matrices Wx and Wy that
project different modalities of the data into a common or-
thogonal basis. The first few principal directions computed
by PLS contain most of the covariance, hence encoding each
direction with a single bit distorts the Hamming distance,
resulting in a poor retrieval performance. In [8], the authors
show that this problem can be overcome by computing a ro-
tated projection matrix W̃x = WxR, where R is a randomly
generated (p× p) orthogonal rotation matrix. Doing so dis-
tributes the information content in each direction in a more
balanced manner, leading to the Hamming distance in the
binary space better approximating the Euclidean distance
in the joint subspace induced by PLS. They also propose
a more principled and effective approach called Iterative
Quantization (ITQ), which involves an iterative optimiza-
tion procedure to compute the optimal rotation matrix R,
that minimizes the quantization error Q, given by:

Q(H,R) = ||H −XWxR||2F (5)

where H is the (n × p) binary code matrix representing
X and ||.||F represents the Frobenius norm. Further de-

(a) SUN09 - L2 dist. (b) SUN09 - SPM dist.

Figure 4: Single-Modality Hashing: Performance of
hashing algorithms (SH [33], SKLSH [25], LSH [5], ITQ [8])
using our semantic representation vs GIST.
tails of the optimization procedure can be found in [8]. The
effectiveness of the iterative quantization procedure for im-
proving hashing efficiency by minimizing the quantization
error has been demonstrated in [8]. Hence, we employ ITQ
to modify the joint linear subspace for the multiple modali-
ties produced by PLS and learn more efficient binary codes.
The final projection matrices are given by W̃x = WxR and
W̃y = WyR, where R is obtained from (5).

4. EXPERIMENTS AND RESULTS
4.1 Semantic Representation

We first show that our semantic representation can be ef-
ficiently compressed using current hashing techniques. We
perform experiments on the standard MSRC dataset and
the SUN09 [4] dataset. The results on the MSRC dataset
are contained in the supplementary material. The SUN09
dataset consists of 4367 training and 4317 test images and
we only use the 21 most frequent object categories. Our
evaluation protocol is similar to [8]. The ground truth seg-
mentations of the images are treated as sketches and are
converted into the semantic representations. The training
images are utilized for learning the parameters of the hash-
ing, image2semantic and text2semantic algorithms. The test
images are divided into two equal sets, the semantic repre-
sentations from the first set are used as queries, while those
from the other set are used to form the database against
which the queries are performed. For each query the av-
erage distance to the k-th nearest neighbor, is used as a
threshold to determine whether a retrieved image is a true
positive. We set k = 20 in case of the SUN09 dataset. We
use the Euclidean (L2) distance as well as the Spatial Pyra-
mid Match (SPM) distance for evaluation. Note that for this
experiment there is just a single mode which is the semantic
representation computed from ground truth segmentations,
and hence we are able to use standard hashing algorithms.
Our aim here is to simply show that the semantic representa-
tion, which is a 13125D binary code that implicitly encodes
location/scale and relationship information, can be quan-
tized to a small number of bits. The results, shown in Fig.
4, plot the mean Average Precision (mAP) as a function of
the number of bits. We can see that the semantic repre-
sentation can be effectively quantized to 128/256 bits while
still having a good retrieval performance, in case of both the
SPM and L2 distances. We also compare the performance
of our semantic representation against GIST features quan-
tized using ITQ [8]. While this comparison is not completely
fair, as the semantic representations have been computed
from the ground truth segmentations, the large difference in
performance shows that by employing a semantic segmen-



8 16 32 64 128 256
0

0.05

0.1

0.15

0.2

number of bits

m
A

P

sk-MMH-SR
img-MMH-SR
text-MMH-SR
img−ITQ−GIST 

(a) SUN09 - L2 dist.

8 16 32 64 128 256
0

0.05

0.1

0.15

0.2

number of bits

m
A

P

sk-MMH-SR
img-MMH-SR
text-MMH-SR
img−ITQ−GIST 

(b) SUN09 - SPM dist.

Figure 5: Multi-Modal Hashing: Retrieval perfor-
mance for image(img-MMH-SR), sketch(sk-MMH-SR) and
text(text-MMH-SR) based queries using our Multi-Modal
Hashing(MMH) Approach which uses the Semantic Rep-
resentation(SR) against a GIST feature representation fol-
lowed by ITQ hashing [8](img-ITQ-GIST).

tation algorithm such as [28], we should be able to perform
much better than GIST, which we show next.

4.2 Multi-Modal Hashing
We now evaluate our multi-modal hashing algorithm. We

follow the same protocol that was used in the previous ex-
periment. However, we now have three query modalities -
images, sketches and text. The true positives are determined
based on the distances between the ground truth semantic
representations of the queries and the database images.

We evaluate three scenarios 1) Sketch Queries: Here the
ground truth segmentations of the test images are used as
sketch based queries, while the training images segmented
using STF [28] are used as the database. We would like to
point out that the ground truth segmentations of the SUN09
dataset are quite coarse with large background regions and
therefore they approximate hand drawn sketches to some
extent. 2) Image Queries: Here the semantic representa-
tions computed from the test(training) images after segmen-
tation by STF [28] are used as queries(database elements)
and no ground truth information is used. 3) Text Queries:
Here, our queries consist of 93 different textual descriptions
comprising two or three different objects, with and without
relationship information. These text queries are converted
into sketches using the “text2semantic’ technique(Fig. 3).
The baseline consists of a GIST based feature representa-
tion, the most widely used feature representation in large
scale image retrieval [25], [33],[8], followed by ITQ hashing
[8].

The results for the SUN09 dataset (5a, 5b), demonstrate
that we are able to improve substantially over GIST, with
the mAP score of our approach for image based queries, us-
ing 256 bit hash codes, being 113% and 89% better than
that of GIST for L2 and Spatial Pyramid distances respec-
tively. The performance of sketch and text based queries is
even better. We chose Semantic Texton Forests [28] primar-
ily for their speed; however using a more accurate (albeit
much slower) semantic segmentation technique such as [18]
would further improve the performance of our approach.

4.3 Multi-Modal Hashing vs Single-Modal Hash-
ing

Our proposed framework involves converting each query
modality to a common semantic representation and hence
multi-modal hashing might seem unnecessary. However, the
semantic representations obtained from the three modali-

Table 1: Multi-Modal Hashing vs Single-Modal Hashing -
Retrieval performance (mAP).

Image Sketch Text Image (GIST)
MVH (our) 0.115 0.168 0.175 -
SVH-ITQ [8] 0.084 0.154 0.138 0.054

ties differ significantly and hence we expect multi-modal
hashing to substantially improve hashing performance. We
tested this hypothesis by comparing our Multi-Modal Hash-
ing technique against a Single-Modal Hashing approach (ITQ)[8],
on the SUN09 dataset using the L2 distance. The results
in Table1 show the retrieval performance (mAP) of Multi-
Modal and Single-Modal Hashing approaches for different
query modalities using 256 bit codes. A more comprehen-
sive evaluation against other Single-Modal Hashing tech-
niques is provided in the supplementary material. The re-
sults clearly demonstrate that the Multi-Modal Hashing sig-
nificantly improves retrieval performance over Single-Modal
hashing in each query modality. The reason is that the Se-
mantic Representations (SR) computed from images or text
queries are quite noisy due to the errors introduced through
“text2semantic” and “image2semantic”. While the original
semantic content of different modalities is correlated, the
noise between them is independent. Consequently the PLS
based approach, which maximizes the covariance between
different modalities in the projected subspace, disregards the
noise leading to superior performance compared to single-
modal hashing approaches. Finally, the results demonstrate
that even in the case of a single query modality (images)
our proposed Semantic Representation (SR) provides a su-
perior representation to GIST, which is currently the most
widely used feature representation in large scale image re-
trieval tasks.

4.4 Text Queries
Our approach for generating sketches from text images

enables us to accommodate text based queries within our
multi-modal framework. However, a more natural retrieval
approach based on text queries alone, would involve utiliz-
ing the semantic segmentation to first identify images that
contain the query objects and then filtering these images by
verifying whether or not the given objects satisfy the rela-
tionships specified in the query. We compare the retrieval
accuracy using text based queries of our method (using 256
bits) against such a verification based approach, for 93 dif-
ferent text queries. The verification based approach is ap-
plied to the segmentations obtained from STF [28]. The
results (Fig. 6) show that the retrieval performance of our
approach is close to the performance of the verification based
approach, despite the fact that our approach loses infor-
mation during hashing. Additionally, the verification based
approach uses the uncompressed segmentation mask, which
occupies at least two orders of magnitude more memory than
our hash code. These results demonstrate the effectiveness
of our sketch generation algorithm, showing that the gener-
ated sketches are relevant as well as diverse. Furthermore,
these results also show that our text based retrieval approach
is competitive with a verification based approach, while also
being much more compact.

An alternative representation for text based retrieval would
involve representing an image by a list of bounding box co-
ordinates and the object class id of each detected object.
However, this representation would still require 800 bits for
an image containing 5 objects, compared to 128/256 bits
required by our approach. Moreover during retrieval, such
a representation would require complicated graph match-



Figure 6: Text based retrieval: A comparison of our ap-
proach against a verification based approach for text queries.
The query types are a) 2 object queries w/o relationship in-
formation b) 3 object queries w/o relationship information
c) All queries w/o relationship information d) Queries with
relationship information e) All queries.

ing algorithms to compute spatial layout similarity between
query and database images, which, in our framework, can be
accomplished by simply computing the Hamming distance.

4.5 Large Scale Dataset - 1 Million Images
To evaluate the efficiency, scalability and accuracy of our

approach on a large scale, we downloaded a set of one mil-
lion images from Flickr. Using this set of 1M images as the
database, we perform image, sketch and text based queries.
For image and sketch based queries, we utilize 200 images
(image queries) and their corresponding ground truth seg-
mentations (sketch queries) randomly selected from the test
images of the SUN09 dataset. For text queries, we use the
five most probable sketches generated for each of the 93 text
queries that we have used in the previous experiments, re-
sulting in a total of 465 text based queries. In case of image
based queries, we use GIST followed by ITQ hashing [8], as
a baseline for comparison. We use 256 bit hash codes for
each case and evaluate these approaches based on the pre-
cision@K. Given a query q (image/text/sketch containing n

object classes), we define precision@K =
∑K

i score(imgi)/K,
where score(imgi) denotes the fraction of the n query ob-
ject classes contained in imgi, the i-th retrieved image for
query q. The advantage of the precision@K metric is that
one needs to annotate only the top K images retrieved for
each query, which is a small fraction of the entire database.
The precision scores are then averaged over all the queries
of each type. The parameters for the hashing algorithm as
well as the segmentation model are learned from the training
images of the SUN09 dataset.

The results are shown in Fig. 7. In case of image based
retrieval, our approach performs on par with GIST. Here,
the evaluation is based only on the presence or absence of
query objects in the retrieved images, disregarding their spa-
tial configuration, due to lack of finer annotations on this
dataset. Since our approach explicitly encodes the spatial
information, we expect it to substantially outperform GIST
when using metrics such as the L2 or the SPM distance, as
was the case on the MSRC and SUN09 datasets. We can also
observe that sketch queries significantly outperform image
queries. This is due to the errors introduced in the segmenta-
tion(“image2semantic”) algorithm, which lead to a distorted
semantic representation of an image query. The retrieval
performance in the case of text based queries is also com-
parable to that of GIST, demonstrating that our approach
can perform at least as well as GIST for each modality in a
large scale setting. Fig. 8 shows some qualitative results.

4.6 System Requirements

Figure 7: Retrieval performance on the Flickr dataset.

In our setup the overall response time is the sum of com-
puting the Semantic Representation(SR) and using the SR
to search the database. In an image query, conversion to the
SR involves semantic segmentation of the image [28] which
takes about 0.2s on a single core. In a text query, the time
required to generate the candidate semantic sketches for 2
and 3 object queries, using [22], is about 0.4s. Since the SR
is very similar to a sketch based query, the time required to
convert a sketch into the semantic representation is negli-
gible. Once the SR has been computed, the time required
to convert it into a 256 bit hash code and search for sim-
ilar instances in a database of size 1 Million is about 0.5s.
Hence the total response time for generating the search re-
sults given an image, sketch or text query is less than a
second. Also note that these timings are on a single core
and we can use a cluster to significantly scale up the dataset
while still maintaining sub-second response times.

The memory required for storing 1M images using 256
bit hash codes is about 32MB. Finally, the time required for
building the database index for 1M images is about 10 hours
on a single core. Note that this Performed offline and does
not impact user experience and moreover it can be signif-
icantly sped up on a cluster. The supplementary material
is available at http://icmr0118.s3.amazonaws.com/0118_
supplementary_material.pdf.

5. CONCLUSION
We have presented a framework for image retrieval based

on complex multi-modal queries. Our framework supports
query specification using semantic constructs such as ob-
jects, attributes and relationships. Furthermore, our frame-
work allows for queries to be specified in the form of an
image, sketch or a text. The effectiveness of our approach
has been demonstrated on three different datasets of varying
difficulty, including a large scale dataset of 1M images.
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Figure 8: Qualitative Results on the Flickr dataset.
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