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» Map vectors in the subspace to binary codes to reduce
memory burden and enable fast matching (Hamming dist.).

Sketch Queries

» Randomly rotate projection matrix to uniformly distribute
information across all dimensions. W, = W. R

» lterative Quantization (ITQ) to compute optimal rotation
matrix that minimizes the quantization error (Gong et al.): Image Queries

Q(H,R) = ||H — XW.R||7




