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Abstract

We present a novel approach for vehicle detection in ur-
ban surveillance videos, capable of handling unstructured
and crowded environments with large occlusions, differ-
ent vehicle shapes, and environmental conditions such as
lighting changes, rain, shadows, and reflections. This is
achieved with virtually no manual labeling efforts. The sys-
tem runs quite efficiently at an average of 66Hz on a conven-
tional laptop computer. Our proposed approach relies on
three key contributions: 1) a co-training scheme where data
is automatically captured based on motion and shape cues
and used to train a detector based on appearance informa-
tion; 2) an occlusion handling technique based on syntheti-
cally generated training samples obtained through Poisson
image reconstruction from image gradients; 3) massively
parallel feature selection over multiple feature planes which
allows the final detector to be more accurate and more ef-
ficient. We perform a comprehensive quantitative analysis
to validate our approach, showing its usefulness in realistic
urban surveillance settings.

1. Introduction
Security incidents in urban environments span a wide

range, starting from property crimes, to violent crimes and
terrorist events. Many large urban centers are currently in
the process of developing security infrastructures geared
mainly to counter terrorism with secondary applications for
police and emergency management purposes. In this con-
text, the ability to automatically search for objects of in-
terest, in particular vehicles, is extremely important. The
recently introduced concept of “Searchable Video Analyt-
ics” [7] allows a system to answer queries such as “Show
me all the two-door red vehicles in camera X from time Y
to Z”. A pre-requisite to enable this capability is to accu-
rately locate vehicles in the video images, so that attribute
extraction and indexing can be performed. In this paper,
we address the problem of vehicle detection in real-world
surveillance videos, although we believe our techniques are
general and could be applied to other objects as well.

Figure 1. Traditional methods based on background modeling fail
to segment vehicles in common urban surveillance conditions. (a)
A typical crowded scene. (b) Corresponding foreground blobs ob-
tained through background subtraction. Note that groups of vehi-
cles are clustered into the same blob.

Assuming a static surveillance camera monitoring an ur-
ban environment, our goal is to detect vehicles in each video
frame captured by the camera. Urban scenarios pose unique
challenges for vehicle detection. High volumes of activity
data, different weather conditions, crowded scenes, partial
occlusions, lighting effects such as shadows and reflections,
and many other factors cause serious issues in real system
deployments, making the problem very challenging. Tra-
ditional methods based on background modeling [16, 17]
generally fail under these difficult conditions, as illustrated
in Figure 1.

Overview of our Approach. We start by describing a
method to automatically collect training samples for a par-
ticular camera view with almost no user interaction (Sec-
tion 3.1). Based on very few manual exemplars (usually
1-4) provided by the user, a rule-based classifier using mo-
tion and shape cues is created to collect a large set of
training samples in low-activity conditions with almost no
false alarms. In a co-training scheme, we use this collected
data to train a camera-specific appearance-based detector,
which works in high-activity scenes and is robust to en-
vironmental factors such as different weather conditions,
shadows, rain, etc.

This data collection technique was applied to capture
training samples from many city surveillance cameras, lead-
ing to a gigantic dataset of real-world vehicle images. Our
dataset contains nearly one million images, about 1000x the



size of existing publicly available vehicle datasets [1, 8]. In
our work, we used this data to train per-camera detectors,
but it could be used to train generic detectors as well.

In order to deal with partial occlusions, we propose a
method for generating realistic occluded vehicles through
Poisson image reconstruction from image gradients (Sec-
tion 3.2). The key idea is to take advantage of the appear-
ance and structure of vehicles occluding other vehicles. We
quantitatively compare our method with other techniques,
showing very good results in challenging crowded scenes.

Finally, we show that large-scale feature selection over
multiple feature planes improves the accuracy as well the
efficiency of the final detector (Section 3.3). We consider
a huge set of potential feature configurations and develop a
parallel version of Adaboost learning for making the feature
selection problem tractable.

2. Related Work
Various models and methods have been proposed for

appearance-based object detection, in particular vehicle de-
tection. Examples include the seminal work of Viola and
Jones [18] and many extensions using different features,
such as edgelets [19] and strip features [20], as well as
different boosting algorithms like Real Adaboost and Gen-
tleBoost. Support vector machines with histograms of ori-
ented gradients have also been a popular choice for object
detection [2, 5]. In earlier work, Schneiderman and Kanade
[14] showed good vehicle detection results using statistical
learning of object parts. Although appearance-based detec-
tors have achieved very good performance in challenging
scenarios, they usually require tedious labeling of thousands
of training samples to work well. In addition, most methods
run below 15 frames per second in conventional machines,
which is not desirable for large-scale surveillance systems
requiring many video channels to be processed by a single
machine.

Co-training and online learning methods [11, 12] alle-
viate the manual labeling issue, while constantly adapting
the detector as new data comes in. A common limitation of
these techniques is the inaccuracy in capturing online data
to correctly update the classifier. Differently, our method
uses a simple combination of motion and shape cues to cap-
ture a diversified set of vehicles during extended periods of
time without any false alarms.

Several datasets have been proposed for learning and
evaluation of vehicle detection algorithms. Examples in-
clude the UIUC [1] and USC [8] datasets as well as generic
object recognition datasets which include cars as an object
category, e.g., Caltech [6], MSRC and the yearly Pascal
VOC challenges [3]. However, these datasets mostly con-
sist of images of vehicles restricted to frontal/rear and side
poses and the number of images of cars is of the order of
1000, which in our opinion, is insufficient for capturing the

entire degree of variation in the appearance of cars due to
changes in pose, viewpoint, illumination and scale. Our
new dataset consists of around 1 million images of vehi-
cles in real-world urban surveillance settings, which should
serve as a useful learning and evaluation resource for the
computer vision community.

Methods for occlusion handling in object detection [9]
generally rely on object part decomposition and modeling
[5]. In our application, however, these methods are not
well suited due to the low-resolution vehicle images. Video-
based occlusion handling from the tracking perspective has
been addressed by Senior et al [15], but it assumes objects
are initially far apart before the occlusion occurs.

Large-scale learning is an emerging research topic in
computer vision. Recent methods have been proposed to
deal with a large number of object classes [13] and large
amounts of data. In contrast, our approach deals with large-
scale feature selection, showing that a huge amount of local
descriptors over multiple feature planes coupled with par-
allel machine learning algorithms can improve not only the
detector accuracy, but also its efficiency at test time.

3. Proposed Approach

In this section we describe our approach for automatic
vehicle detection in urban scenes, including the training
dataset formation, synthetic generation of occlusions, and
large-scale detector learning.

3.1. Automatic Data Collection

Since it is infeasible to manually collect a large and di-
verse dataset consisting of cropped images of vehicles, we
devised a simple procedure to automatically collect images
of vehicles in traffic videos, which we now describe.

We collected videos from about 30 traffic surveillance
cameras (Fig. 2a), which constantly captured data over a
period of several months, providing us with data in a variety
of illumination and weather conditions. Furthermore, due to
variations in the positions of these cameras with respect to
the direction of traffic, there were large variations in poses
of vehicles captured from different cameras.

In each camera-view, vehicles usually appear in 1-4
poses, as a traffic camera typically overlooks either a single
road or an intersection. We collect data per camera for each
vehicle pose independently by following the steps below:

• We manually define one or more regions-of-interest
(ROI), which specify the regions of the image from
where we want to capture vehicles.

• In each ROI, we perform background subtraction [17]
to obtain the bounding boxes of foreground blobs at
each video frame. We also obtain the associated mo-



Figure 2. (a) Sample shots from some of the traffic surveillance cameras. (b) Illumination Variation in the Dataset: Images of cars
collected from a single camera view showing the illumination variation present in the dataset. (c) Vehicles categorized into 12 categories,
according to their direction of motion {0◦ − 30◦, 30◦ − 60◦, . . . , 330◦ − 360◦}, showing the diversity in pose of the cars in the dataset.

tion direction of foreground blobs through standard op-
tical flow computation.

• We collect vehicles by using a simple rule-based clas-
sifier which analyses the shape and motion of fore-
ground blobs at fixed time intervals. More specifically,
in our implementation, we just check whether the as-
pect ratio, size, and motion direction of a particular
foreground blob are within a pre-defined range of val-
ues that characterizes a vehicle. The range of values is
obtained heuristically from very few manually labeled
exemplars (usually 1-4, depending on the number of
vehicle poses in the scene).

This simple procedure enables us to collect a large num-
ber of images of vehicles, while requiring minimal super-
vision. Figure 2b shows examples of training samples cap-
tured using a 10 hours video (from 8am to 6pm) for a spe-
cific camera and specific vehicle pose. In this experiment,
we were able to capture few thousands of samples without
false alarms. Note that we have many false negatives as we
are conservative, e.g., in this video the classifier rejected
many vehicle samples in crowded periods, or vehicles with
long attached shadows, etc. However we can see in Figure
2b that we capture samples containing a huge amount of ap-
pearance variation - different lighting, weather conditions,
vehicle models, etc. This is extremely important for training
the appearance-based detector described in Section 3.3.

Using this data collection method, we were able to col-
lect a dataset consisting of about 1 million images of ve-
hicles. We categorized each vehicle into one of 12 differ-
ent categories depending on its motion direction, to give a
coarse estimate of its pose (Fig. 2c). There is a wide varia-
tion in the scale and pose of vehicles collected from differ-
ent cameras, even when they have the same motion direc-

tion. We notice very few false alarms in the data collection
process - in rare cases e.g., when a group of small objects
have the same aspect ratio, size, and motion direction of
a vehicle. These samples were manually pruned from our
dataset.

3.2. Poisson Occlusion Handling

Although the algorithm described in the previous sec-
tion can collect vehicle samples under significant variation
of appearance, it fails to capture samples with partial occlu-
sion. In this section we show a fully automatic process to
generate realistic partially occluded vehicle images. Adding
images with occlusions to the training set makes the detec-
tor much more robust to crowded scenarios, as we will show
later in our experiments.

Figure 3 illustrates our algorithm. For a given vehicle
image IA, we randomly select another vehicle image IB
with its associated foreground mask MB . We first dilate
MB to make sure the mask entirely contains the vehicle.
Then we follow the steps below:

• Let IAB be the image formed by pasting the vehicle of
image IB (i.e., the region defined by MB) at a random
location of image IA.

• Compute the intensity gradient:
G(x, y) = 5IAB(x, y)

• Let G′(x, y) be the modified gradient field obtained by
adding zeros to G(x, y) along the border pixels of the
foreground mask MB .

• Reconstruct image I ′AB which minimizes |5I ′AB−G′|

Image reconstruction from gradients fields, an approx-
imate invertibility problem, is still a very active research



Figure 3. Synthetic generation of occluded vehicles based on Poisson image reconstruction from gradient fields.

Figure 4. Examples of realistic occluded vehicles generated by our algorithm. No user intervention is required.

area. In R2, a modified gradient vector field G′ may not be
integrable. We use one of the direct methods proposed by
Fattal et al. [4]. The least square estimate of the original in-
tensity function, I ′AB , so that G′ ≈ IAB , can be obtained by
solving the Poisson differential equation 5I ′AB = divG′,
involving a Laplace and a divergence operator. We use the
standard full multigrid method to solve the Laplace equa-
tion. We pad the images to square images of size the nearest
power of two before applying the integration, and then crop
the result image back to the original size.

The resultant image I ′AB is added to the collection of
training samples and this process is repeated so that many
occluded vehicle samples are generated. Note that I ′AB pro-
vides a seamless blending of two vehicle images, even when
they are captured under different lighting conditions. The
superimposed image IAB may contain pieces of the road
and other artifacts due to noise in the foreground mask MB .
Since we modify the gradient along the border pixels of
MB ,the resultant image I ′AB is much cleaner and realistic.

A similar algorithm is applied to generate images where
the vehicle of image IA (which is always positioned in the
center of the image) is the occluder. Figure 4 shows exam-
ples of realistic training samples generated by our method.
The process is fully automatic.

It is important to note that we always have a vehicle in
the center of the training image. The position of the other
vehicle is constrained by just allowing it to be placed at ran-
dom locations that will create partial occlusions, not full oc-
clusions. The training images are further cropped to have a
tighter bounding box around the vehicle in the center. Since
at test time our detector is based on sliding windows, if we
have one vehicle occluding another vehicle, then the detec-

tor will fire twice, i.e., we will have two bounding boxes
(one for each vehicle).

3.3. Large-Scale Detector Learning

For each camera-view, we learn a specific vehicle detec-
tor for each vehicle pose using training samples collected
automatically as described in the previous sections. There-
fore, at test time, we have usually 1-4 detectors running per
camera, which are interleaved across the video frames to
improve frame rate.

The basis of our learning algorithm is the framework pro-
posed by Viola and Jones [18]. It consists of a cascade of
Adaboost classifiers, where the weak learners are simple
thresholds over Haar-like features. Each stage of the cas-
cade is tuned to minimize false negatives at the expense of
a larger number of false positives – this allows fast inference
by quickly discarding background images. Bootstrapping is
also employed by selecting negatives examples where the
previous stages have failed. For details, see [18].

The key novelty of our learning algorithm is the intro-
duction of multiple feature planes in the feature selection
process, as shown in Figure 5. By considering feature
planes such as red, green, and blue channels, gradient mag-
nitude, Local Binary Patterns, and many others, we allow
the final detector to be much more powerful, combining
Haar-like features of different modalities. In this frame-
work, feature selection is performed over a pool containing
a huge set (potentially millions) of feature configurations.
This poses a serious problem in terms of training time, as
even with a single feature plane and a few thousand im-
ages Adaboost training takes days on a standard desktop
machine. Therefore to deal with a huge pool of local feature



Figure 5. Feature selection over multiple feature planes. A feature
pool containing a huge set (order of millions) of feature configu-
rations is generated.

descriptors as we are proposing we need a way to parallelize
training.

Adaboost is inherently sequential [10], making it diffi-
cult to scale in general, but in this particular setup there is a
simple solution: parallelization at the level of features. At
each step during training we have to compute a large num-
ber of features for all training images and select the one
that better classifies the data; this can be done in parallel,
with each CPU working on a subset of the features, and the
amount of synchronization necessary is minimal: each CPU
has to report only the best feature of its subset.

Additionally, at each stage a set of negative patches has
to be selected from the set of available negative images. The
selected patches are the ones for which the current classi-
fier fails. This is the most time consuming activity in later
stages of the cascade training, taking hours even for a small
training set. Parallelization can also be implemented here,
with each CPU searching for negative patches in a different
subset of the negative images. Again, the amount of time
spent on synchronization1 here is comparatively very small,
allowing for an almost linear speed-up with the number of
CPUs employed.

So far in our implementation we have considered paral-
lel feature selection over four color planes (gray-scale, red,
green, and blue channels). As we will show in the experi-
mental section, by adding color we not only improve the ro-
bustness of the classifier but also get a sparser solution, with
a smaller number of selected features. That, in turn, reduces
computation time during inference. We are currently adding
more feature planes (gradients and texture descriptors, mul-
tispectral planes, etc.), which should improve results even
more.

4. Experiments
Rather than training a general, single vehicle detector us-

ing our large dataset, we are currently training multiple spe-
cific detectors for each camera. Without loss of generality,

1We used Message Passing Interface (MPI) in our implementation.

we choose one camera for our quantitative analysis. We
collected a challenging test set from this specific surveil-
lance camera containing 229 images and 374 vehicles of a
single pose (side-view). The images were captured in dif-
ferent months, covering different weather conditions inclu-
ing sunny and rainy days, different lighting effects, such
as shadows and specularities, and different periods of time
such as morning and evening. In addition, we split our test
set into two groups: high activity, i.e., crowded scenes with
many occlusions (104 images and 217 vehicles) and low ac-
tivity (125 images and 157 vehicles).

We applied our data collection technique described in
Section 3.1 to a 5 hours (from 2pm to 7pm) video sequence
of the same camera but in a different day/month of the pe-
riod used to capture the test images. This way we could col-
lect 1800 training samples automatically without any false
alarms, which were then re-sized to 26x10 resolution. A
set of nearly 1000 negative images (non-vehicle data) were
collected from the web and a cascaded Adaboost classifier
based on Haar-like features was learned with a single gray-
scale feature plane; later we will show the enhancement of
learning with multiple planes. Figure 6a shows a couple
of examples of training samples of this standard detector.
At test time we apply the detector at different positions and
scales, in the same sliding window scheme of [18]

Occlusion Analysis. In order to test our occlusion han-
dling technique, we synthetically generated 1700 additional
occluded vehicles using the technique described in Section
3.2 (Figure 6b) and added them to the training set to cre-
ate a new detector. For comparison, we also trained a de-
tector using images with occluders consisting of random
noise (Figure 6c) and a part-based detector using images
of the top part of the vehicles which are generally not oc-
cluded (Figure 6d). The ROC curves are shown in Figure 7.
Note that our proposed approach significantly outperform
all other techniques in crowded scenes, while having com-
parable performance to the standard detector in low activity
scenes, which is reasonable. The occlusion noise detector
does not take into account the appearance and structure of
the occluder as in our approach. The part-based detector
does not have good performance due to the low resolution
of the vehicle images.

Large-Scale Feature Selection. We compared the stan-
dard Adaboost detector using one gray-scale feature plane
with our approach using massively feature selection over
multiple feature planes. As of now, we used four planes
(gray-scale, red, green, blue channels). Figure 8 shows
the ROC curves. In addition to achieving improved accu-
racy, our large-scale feature selection scheme allows the
final detector to be more sparse and therefore more effi-
cient (see Figure 10). Sample detection results of our quan-
titative analysis can be seen in Figures 9a and 9b. We
have also applied the same process (automatic data collec-



Figure 6. Examples of training images used in different experiments.

Figure 7. Our occlusion handling approach significantly outperform other methods in high activity scenes (left), while having comparable
performance to the standard detector in low activity periods (right).

Figure 8. Comparison of our approach using massively parallel feature selection over multiple planes with standard Adaboost detection
using a single gray-scale feature plane, in high activity (left) and low activity periods (right).

tion, occlusion generation, and detector learning) to other
camera views, obtaining similar results. Qualitative re-
sults are shown in Figure 9c. Superior results can be ob-
tained by applying our vehicle detector to video, by con-
straining the search process to foreground regions obtained
through background modeling. We refer the reader to video
demos at http://rogerioferis.com/demos.html. Our system
runs quite efficiently, at an average of 66Hz on a conven-
tional laptop computer (2.3GHz, 3GB of RAM).

Discussion. The reason why our method is robust to
environmental changes (shadows, rain, etc.) is due to the
fact that our data collection method captures many images
under quite different lighting conditions, and also due to
our rich feature pool. The robustness to crowds and par-
tial occlusions come from our occlusion handling method.
The efficiency of our approach is due to the fact that we are

learning detectors using samples of the same camera, which
leads to a classifier with much less features than a generic
vehicle detector. In addition, as we showed above, we ob-
tain even more sparsity with large-scale feature selection.
Failure cases include vehicle images occluded by more than
40% and other examples for which the detector is not able to
generalize. The performance could be improved even more
by collecting more training data over different days.

Although our data collection technique can capture dif-
ferent vehicle classes, we can not detect large buses and
bikes, for instance. As we run few pose-specific detectors
per camera, we may not detect vehicles when they undergo
poses not covered by the set of detectors, for example, when
a car is turning. In our application, however, the detection
output is used for indexing and to improve tracking, mean-
ing that we need high precision but some false negatives can



Figure 9. Detection results. (a) High activity and (b) Low activity samples used in our quantitative analysis. (c) Different camera view

Figure 10. Number of selected features at each stage of the classi-
fier. Training with more features yields a sparser solution.

be tolerated. Finally, we note that our occlusion handling
technique takes into account the appearance of vehicles oc-
cluding other vehicles, but not other types of occlusions,
such as a vehicle occluded by a lamp post. This could be
done by automatically collecting data from object tracks in
low-activity periods as vehicles may get occluded.

5. Conclusion
We have presented a new approach for vehicle detection

in challenging urban scenarios, involving three main com-
ponents: automatic training data collection, synthetic gen-
eration of occlusions, and large-scale feature selection. Fu-
ture work include 1) exploiting our vehicle dataset to learn a
generic vehicle detector using millions of images; 2) adding
more feature planes to generate a feature pool containing
hundreds of millions of local features; and 3) develop large-
scale online adaptation methods.
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