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Abstract

We propose a novel hybrid model that exploits the
strength of discriminative classifiers along with the rep-
resentational power of generative models. Our focus is
on detecting multimodal events in time varying sequences.
Discriminative classifiers have been shown to achieve
higher performances than the corresponding generative
likelihood-based classifiers. On the other hand, generative
models learn a rich informative space which allows for data
generation and joint feature representation that discrimina-
tive models lack. We employ a deep temporal generative
model for unsupervised learning of a shared representation
across multiple modalities with time varying data. The tem-
poral generative model takes into account short term tem-
poral phenomena and allows for filling in missing data by
generating data within or across modalities. The hybrid
model involves augmenting the temporal generative model
with a temporal discriminative model for event detection,
and classification, which enables modeling long range tem-
poral dynamics. We evaluate our approach on audio-visual
datasets (AVEC, AVLetters, and CUAVE) and demonstrate
its superiority compared to the state-of-the-art.

1. Introduction
Many events in real life are inherently multimodal with

each modality containing information useful for detecting
or recognizing the event. Despite this, most work [11, 12]
focuses on modeling and recognizing events using a single
modality, neglecting other sources of information. While
this might be sufficient for certain problems, it is inade-
quate when the events to be detected are complex and sub-
tle (e.g. human emotions). Humans are capable of com-
bining cues from multiple modalities to reason about spe-

∗The author is a student at Oregon State University and did this work
while being an intern at SRI International.

cific events. Therefore when multiple, information rich,
modalities are present, it becomes important to jointly in-
terpret and reason about the information from each modal-
ity. While jointly modeling multiple modalities, the tempo-
ral information within and across modalities also needs to
be accounted for. Following the human cognitive system,
we propose to solve the multimodal fusion using a neuro-
inspired model namely Conditional Restricted Boltzmann
Machines (CRBMs) [27]. The CRBM is a non-linear gen-
erative model for time series data that uses an undirected
model with binary latent variables connected to a number of
visible variables. To the best of our knowledge, we are the
first to propose multimodal fusion of temporal data using
temporal deep networks. A CRBM based generative model
enables modeling short-term multimodal phenomenon and
also allows us to deal with missing data by generating it
within or across modalities. Furthermore, we propose a hy-
brid model to acquire the benefits of a discriminative clas-
sifier. The hybrid model involves enhancing the CRBM
with a Conditional Random Field (CRF) based discrimina-
tive model, leading to a superior classification performance,
while also allowing us to model long-term temporal dy-
namics. We evaluate our approach on multiple audio-visual
datasets and show how our results are comparable/superior
to the state-of-the-art approaches.

Our contributions are two fold. First, we propose a new
general hybrid model that consists of a generative model
that is capable of learning a homogeneous joint feature rep-
resentation that captures low level concepts from multiple
heterogeneous data sources and a discriminative model for
high level reasoning. This hybrid model combines the
advantages of temporal generative and discriminative
models forming an extendable formal fusion framework for
classifying multimodal data at multiple time scales. Fur-
thermore, it can deal with missing data both within and
across modalities. Second, we provide an extensive evalu-
ation of the hybrid model on multimodal time-varying data
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sequences, systematically justifying each component of
our model.

Paper organization: In sec. 2 we discuss prior work. In
sec. 3 we give a brief background of similar models that mo-
tivate our approach, followed by a description of our hybrid
model. In sec. 4 we describe the inference and learning.
In sec. 5 we show quantitative results of our approach, fol-
lowed by the conclusion in sec. 6.

2. Prior work
Representative work on multimodal (Audio-Video) fu-

sion includes the Hidden Markov Models (HMMs) based
methods [5] and Conditional Random Fields (CRFs) [18].
However, these approaches lack the advantages of genera-
tive models, which include, the ability to learn a joint rep-
resentation and the ability to deal with missing data. Re-
cently, deep networks have been used for multimodal fu-
sion [23] (tags/image) and [13] (audio/images). While all
prior work on multimodal deep learning ignores the tempo-
ral aspect of the data, our preliminary experiments showed
that jointly modeling the temporal content from different
modalities helps in substantially improving both classifica-
tion and generation performance. In this paper, we focus
on the joint modeling of multimodal data using a hybrid
model that comprises of temporal generative and discrimi-
native models. We first review prior work on hybrid models
followed by deep networks and conditional random fields.
Hybrid Models: consist of a generative model, which usu-
ally learns a feature representation of low level input, and
a discriminative model for higher level reasoning. Recent
work has empirically shown that generative models which
learn a rich feature representation tend to outperform dis-
criminative models that rely solely on hand-crafted features
[16]. Hybrid models can be divided into three groups, joint
methods [9, 3], iterative methods[4], and staged methods
[16]. Joint methods optimize a single objective function
which consists of both the generative and discriminative
energies. Iterative methods consist of a generative and a
discriminative model that are trained in an iterative man-
ner, influencing each other. In staged methods, both models
are trained separately, with the discriminative model being
trained on representations learned by the generative model.
Classification is performed after projecting the samples into
a fixed-dimensional space induced by the generative model.
Staged methods are currently the most popular in the com-
munity, primarily because they are computationally eas-
ier to manage. Our proposed approach follows the staged
method. For the purpose of solving our problem we choose
a CRBM based generative model, and a CRF based discrim-
inative model. Next we briefly go over recent literature of
deep networks.
Deep Networks: are able to learn rich features in an un-
supervised manner, this is what makes deep learning very

powerful. They have been successfully applied to many
problems [1]. Restricted Boltzmann Machines (RBMs)
form the building blocks in deep networks models [19]. In
[19], the networks are trained using the Contrastive Diver-
gence (CD) algorithm [7], which demonstrated the ability of
deep networks to capture the distributions over the features
efficiently and to learn complex representations. RBMs can
be stacked together to form deeper networks known as Deep
Boltzmann Machines (DBMs), which capture more com-
plex representations. Recently, deep networks based tem-
poral models, capable of modeling a more temporally rich
set of problems have been proposed. These include Condi-
tional RBMs (CRBMs) [27] and Temporal RBMs (TRBMs)
[25, 24]. CRBMs have been successfully used in both visual
and audio domains. They have been used for modeling hu-
man motion [27], tracking 3D human pose [26] and phone
recognition [12]. We now briefly go over recent literature
on CRFs.
Conditional Random Fields: have been shown to be effec-
tive for labeling sequential data. CRFs [8] are able to uti-
lize arbitrary features and model non-stationarities. Hidden
Conditional Random Fields (HCRFs) have been proposed
as an extension of CRFs with hidden states [17, 28]. CRFs
with hidden states, showed an increase in modeling power
and have been shown to improve the classification perfor-
mance.

In the following section we formulate our hybrid model,
and specify its generative and discriminative components.

3. Multimodal Hybrid Model

The hybrid model allows us to take advantage of the
benefits of the generative models (filling in missing data,
inferring joint representation), as well as the benefits of a
discriminative model leading to a stronger classifier com-
pared to purely generative models. We propose a general
model that reduces to a purely discriminative model, if we
marginalize over the hidden nodes of the generative part h.
This is equivalent to inferring the class labels y directly
based on the features. Also it reduces to a purely genera-
tive model, if we marginalize over y. This is equivalent to
learning the features for a specific class. We first define the
model’s variables.

Our multimodal fusion hybrid model p(yt,vt,ht|v<t)
shown in (1) is decomposed into two terms, a generative
component p(vt,ht|v<t), and a discriminative component
p(yt|ht,vt)

1. We define yt to be a multi-class label vector
at time t, vt is the vector of raw features at time t, and ht

is a vector of the hidden variables. v<t is the concatenated

1In our model yt is independent of vt given ht, i.e. p(yt|vt,ht) =
p(yt|ht), however, for generality we decided to start from the more gen-
eral formulation that allows us to explain our hybrid model.



history vector of the visible variables (raw features).

p(yt,vt,ht|v<t)︸ ︷︷ ︸
Hybrid

= pD(yt|vt,ht)︸ ︷︷ ︸
Discriminative

· pG(vt,ht|v<t)︸ ︷︷ ︸
Generative

(1)

In the following subsections, we first go over the back-
ground of our model by describing RBMs, followed by their
extension to CRBMs, which are the main building blocks of
our generative component. Then we define our discrimina-
tive component.

3.1. Background

We briefly define Restricted Boltzmann Machines and
Conditional Restricted Boltzmann Machines since our hy-
brid model uses them for the generative part. We decided
to use these models to enable efficient on-line inference and
learning.
The Restricted Boltzmann Machines: An RBM defines a
probability distribution pR(v,h;θR) as a Gibbs distribution
(2), where v is a vector of visible nodes, h is a vector of
hidden nodes. ER(v,h;θR) is the energy function and Z is
the partition function which ensures that the distribution is
valid. The parameters θR to be learned are a and b the bi-
ases for v and h respectively and the weights W . The RBM
architecture is defined as fully connected between layers,
with no lateral connections. This architecture implies that v
and h are factorial given one of the two vectors. This allows
for the exact computation of p(v|h) and p(h|v).

pR(v,h;θR) = exp[−ER(v,h;θR)]/Z(θR),

Z(θR) =
∑

v,h exp[−ER(v,h;θR)],

θR = {a,b,W }

(2)

In case of binary valued data vi ∈ {0, 1} and a binary
valued hidden layer hj ∈ {0, 1}, a logistic function2 is
defined for each of the two conditionals p(vi = 1|h) =
σ(ai +

∑
j hjwij) and p(hj = 1|v) = σ(bj +

∑
i viwij).

The energy function is defined as in (3).

ER(v,h;θR) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

viwi,jhj (3)

In case of real valued data, p(vi|h) is defined as a multi-
variate Gaussian distribution with zero mean and unit co-
variance p(vi|h) = N (ai +

∑
j hjwij , 1). The conditional

p(hj = 1|v) stays the same, since we want the hidden layer
to be binary (empirically proven to be better [27, 25]). The
energy function ERBM(v,h;θRBM) is slightly modified to
allow for the real valued v as shown in (4).

ER(v,h;θR) = −
∑
i

(ai − vi)2/2−
∑
j

bjhj −
∑
i,j

viwi,jhj (4)

2The logistic function σ(·) for a variable x is defined as σ(x) = (1 +
exp(−x))−1.

The Conditional Restricted Boltzmann Machines:
CRBMs are a natural extension of RBMs for modeling short
term temporal dependencies. In simple terms, a CRBM is
an RBM model which takes into account history from the
previous time instances [(t − N), . . . , (t − 1)] at time (t).
This is done by treating the previous time instances as addi-
tional inputs. Doing so does not complicate inference3. A
CRBM defines a probability distribution pC(vt,ht|v<t) as
a Gibbs distribution (5).

pC(vt,ht|v<t;θC) = exp[−EC(vt,ht|v<t;θC)]/Z(θC),

Z(θC) =
∑

v,h exp[−EC(vt,ht|v<t;θC)]

θC = {a,b,A,B ,W }

(5)

The additional inputs from previous time instances are
modeled as directed autoregressive edges from the past
N visible nodes and the past M hidden layers, where,
N does not have to be equal to M . The concatenated
history vector is defined as v<t. The new energy func-
tion EC(vt,ht|v<t;θC) is defined similar to (4) in (6),
where ci,t = ai,t +

∑
nAn,ivn,<t and dj,t = bj,t +∑

mBm,jvm,<t and A and B are matrices of concatenated
vectors of previous time instances of a and b.

EC(vt,ht|v<t;θC) = −
∑

i(ci,t − vi,t)2/2

−
∑

j dj,thj,t −
∑

i,j vi,twi,jhj,t

(6)

3.2. Generative Model

For the generative component, pG(vt,ht|v<t), we de-
fine a Gibbs distribution over a multimodal network of
stacked CRBMs (7). This is similar to the approach pro-
posed in [23] and [13] except that we use CRBMs as our
main building block instead of RBMs. This enables us to
model the temporal nature of the audio-visual data.

pG(vt,ht|v<t) = exp[−EG(vt,ht|v<t)]/Z(θG),

Z(θG) =
∑

v,h exp[−EG(vt,ht|v<t)],

θG = {a,b,A,B ,W }

(7)

The multimodal energy EG(vt,ht|v<t;θG) is decomposed
into two parts as shown in (8).

EG(vt,ht|v<t;θG) =
∑

mES(vm
t ,h

m
t |vm

<t)

+EF(h1,...,M
t ,hF

t |h
1,...,M
<t )

(8)

3Some approximations have been made to facilitate efficient training
and inference, more details are available in [27].



Figure 1. This figure shows a progression of models in increasing order of sophistication from (a) to (f) ((a) being the simplest). (a) Non temporal
generative deep network RBM [19], (b) Temporal generative deep network CRBM[27], (c) Multimodal non temporal generative deep network RBM[13],
(d) Multimodal dynamic generative deep network CRBM, (e) Hybrid Multimodal CRF-RBM, and (f) Hybrid dynamic CRF-CRBM.

The first part is the single modality energy ES, which is
defined over a CRBM of a single modality m4. It consists
of unary terms representing the bias of each layer, and a
pairwise term which relates the nodes of two layers (9).

ES(vm
t ,h

m
t |vm

<t) = −
∑

i(c
m
i,t − vmi,t)2/2

−
∑

j d
m
j,th

m
j,t −

∑
i,j v

m
i,tw

m
i,jh

m
j,t

(9)

The second part of (8) is the fusion energy EF for the joint
representation, where hF

t is the fusion hidden layer. For a
multimodal CRBM, we define the joint representation (i.e
fusion) layer to be the top layer as shown in (10).

EF(h1,...,M
t ,hF

t |h
1,...,M
<t ) = −

∑
i,m cmi,th

m
i,t

−
∑

j d
F
j,th

F
j,t −

∑
i,j,m hmi,tw

F
i,jh

F
j,t

(10)

Next, we specify the discriminative component of our hy-
brid model.

3.3. Discriminative Model

We now describe our discriminative model for classifi-
cation. While the multimodal CRBMs are very effective for
learning and representing short term temporal phenomena,
we also need to model long range temporal dynamics. With
this requirement in mind, we choose Conditional Random
Fields (CRFs) [8] as our discriminative model. Although
hidden state CRFs (HCRFs) provide an increased modeling
power compared to CRFs, in our case the classification re-
sults of CRFs and HCRFs were comparable, justifying the
use of CRFs. Our discriminative component, modeled by
pD(yt|hF

t ;θD) as a Gibbs distribution of a CRF model as

4Extension to multiple hidden layers is straightforward, where the
higher layers are binary CRBMs, with inputs from the previous hidden
layer.

shown in (11).

pD(yt|hF
t ;θD) = exp[ED(yt|hF

t ;θD)]/Z(θD),

Z(θD) =
∑

y ED(y|hF
t ;θD),

θD = {ω1,ω2}

(11)

We define yt to be the label of the sequence at time t and
hF
t to be the output of the multimodal CRBM (8) which

serves as an input to the CRF as shown in Fig. 1(e,f). Fi-
nally, we define Z to be the partition function to ensure the
proper normalization of the model. The energy of the CRF,
ED(yt|hF

t ;θD), is defined in (12). Note that the CRF model
assigns a label to each node of the sequence.

ED(yt|hF
t ;θD) =

∑
j ω

1
j f

1
j (yt−1,yt,h

F
t )

+
∑

k ω
2
kf

2
k (yt,h

F
t )

(12)

where f1 is a transition feature function and f2 is a state
feature function, with ω1

t the transition component of the
parameters and ω2

t the state component of the parameters.
In the following section we specify the inference and learn-
ing algorithms for our model.

4. Inference and Learning
Inference is done in a layer-wise manner by activating a
hidden layer given the visible layer using the conditional
independence advantage of the CRBM model p(hj = 1|v).
Fig. 2(a) shows the feature representation activated using
unimodal CRBMs for audio and video on the AVEC dataset
and Fig. 2(b) shows the fused feature representation from
the multimodal CRBM using the activations of unimodal
CRBMs on the AVEC dataset. Given the fused feature rep-
resentation hF

t , we use it as an input to the CRF and then



we get the predicted label sequence yt by maximizing (13).
We summarize our inference in Algorithm 1.

yt = arg max
y

pD(yt|hF
t ;θD) (13)

Algorithm 1: Inference
Input: Multimodal data, network parameters θG, and θD .
Output: Activity class label per frame yt

1 for m = 1 :Number of modalities M do
2 for j = 1 :Number of nodes in hm do
3 Activate the modality’s hidden layer:

pG(h
m
j = 1|vm,vm

<t) ∼ σ(cmj +
∑

i v
m
i w

m
ij );

4 end
5 end
6 for k = 1 :Number of nodes in hF do
7 Activate the Fusion hidden layer:

pG(h
F
k = 1|h1,...,M ,h1,...,M

<t ) ∼
σ(cFk +

∑
j h

1,...,M
j wF

jk);
8 end
9 Classify the frame label: yt = argmaxy pD(yt|hF

t ;θD)

Learning our hybrid model is performed by separately
learning the parameters for the generative θG and discrim-
inative part θD. The parameters of the generative model
(CRBM)5 are learned using Contrastive Divergence (CD)
[7] which produces the learning rules in (14). The update
equations of the dynamically changing bases ∆c and ∆d
are obtained by first updating ∆A and ∆B as in the case of
the real valued RBM (4) and then combining them with ∆a
and ∆b.

∆wi,j ∝ 〈vihj〉data − 〈vihj〉recon
∆ai ∝ 〈vi〉data − 〈vi〉recon
∆bj ∝ 〈hj〉data − 〈hj〉recon

∆Ak,i,t−n ∝ vk,t−n(〈vi,t〉data − 〈vi,t〉recon),
∆Bi,j,t−m ∝ vi,t−m(〈hj,t〉data − 〈hj,t〉recon)

(14)

Where 〈·〉data is the expectation with respect to the data
distribution and 〈·〉recon is the expectation with respect to
the reconstructed data. The reconstruction is generated by
first sampling p(hj = 1|v) for all the hidden nodes in par-
allel. The visible nodes are then generated by sampling
p(vi|h) for all the visible nodes in parallel. The discrimina-
tive learning is done by maximum likelihood estimation of
θD in (11) using [20]. In the following section we evaluate
our model on standard benchmarks against the state-of-the-
art approaches.

5Maximum likelihood learning is slow in learning RBM parameters,
however, learning still works if we approximately follow the gradient of
another function, in this case the other function is CD.

5. Experiments
In order to evaluate the performance of our proposed ap-

proach, we compare the different hybrid models shown in
Fig. 1 (c), (d), (e), and (f), which differ in the type and
configuration of discriminative and generative models. We
show the improvement resulting from each additional en-
hancement. We also compare against the state-of-the-art
generative, discriminative, and hybrid models and report
the classification results in multiple settings which include
- unimodal data (Tab 1), multimodal data (Tab 1), miss-
ing data within a modality (Tab 2) and missing data across
modalities (Tab 3).
Variants: To fully evaluate our approach we propose a set
of variants that consists of different combinations of dis-
criminative and generative models. The discriminative set
consists of {SVM, CRF}, and the generative set consists of
{RBM, CRBM}. Using the four variants created from the
two sets in addition to running the discriminative set on raw
features (which we refer to as RAW) as our baseline, we
can evaluate the value of each additional component of our
hybrid model. We compare against [13] using the variant
SVM-RBM, which is equivalent to the one they used. The
training of the generative part is completely unsupervised,
while the discriminative part is trained in a supervised man-
ner.
Datasets and Implementation Details: After examining
the literature we found three datasets suitable for evaluating
our hybrid model. All the three datasets consist of temporal
data from two modalities – Audio and Video. In our ex-
periments, we explore the different combinations of hand-
crafted features versus the feature representations learned
by deep learning. Our experiments allow us to use the
CRBMs for learning feature representations from raw pix-
els/audio spectrograms as well from hand-crafted features.

AVEC [21] is an audio-visual dataset for single person
affect analysis. The dataset involves users interacting with
emotionally stereotyped virtual characters operated by a hu-
man. The visual data contains mainly the face of the user
interacting with the character. The Audio data consists of
recordings of utterances of the user and is synchronized
with the video. The dataset has been annotated with binary
labels for four different affective dimensions - Activation,
Expectation, Power and Valence. We use the AVEC dataset
to compare against [18, 5]. The dataset is divided into two
sets, 31 sequences for training6 and 32 sequences for test-
ing. The dataset comes with pre-computed audio and video
features; refer to [21] for details. We apply PCA on the
extracted features and reduce each of the audio and video
features to 100 dimensions. For each modality we choose a

6We did not use the complete sequences because it caused over fitting
of our models, rather we have dropped 30% of the frames per sequence and
used the rest for training. This was empirically evaluated for achieving the
best classification/generation results.



Figure 2. Inference in Multimodal Fusion: (a) Feature representa-
tion activated by unimodal CRBMs for audio/video on AVEC dataset.
(b) Fused feature representation activated by a multimodal CRBM
based on the unimodal activations on AVEC dataset. The figures show
that multimodal CRBMs can learn a homogeneous joint representa-
tion from heterogeneous modalities enabling cross-modal generation
of missing data.

Figure 3. (a) Within modality generation: We evaluate the
ability of our approach to handle varying degrees of missing
data in a single modality (Tab. 2). (b) Cross modality gen-
eration: We evaluate the ability of our approach to generate
missing data across modalities – only one of the modalities is
available (Tab. 3).

CRBM with a temporal order N = 8, with the first hidden
layer being over-complete consisting of 150 nodes, and the
multimodal fusion layer consisting of 300 nodes.

AVLetters[11], consists of 10 speakers uttering the letters
A to Z, three times each. The dataset also provides pre-
extracted 60 × 80 patches of lip regions along with audio
features (MFCC features of 483 dimensions7). The dataset
is divided into two sets, 2/3 of the sequences for training
and 1/3 for testing. Following the same setup as in [13],
we reduce the dimensionality of the audio features to 100
dimensions using PCA whitening and the video features (lip
region) to 32 dimensions. For each modality we choose a
CRBM with order N = 3 with the first hidden layer being
over-complete with 150 nodes and the multimodal fusion
layer consisting of 300 nodes.

CUAVE [15], consists of 36 speakers uttering the dig-
its 0 to 9. The dataset provides the aligned face of each
speaker of size 75 × 50, as well as the audio spectrogram
and MFCC features of dimensionality 534. The dataset is
divided into two sets, 1/2 for training and 1/2 for testing.
We follow the same experimental setup as in [13]. As with
the AVLetters dataset, we reduce the dimensionality of the
audio features to 100 dimensions using PCA whitening and
the video features (lip region) to 32 dimensions. For each

7The raw audio was not provided for AVLetters dataset.

modality we choose a CRBM with order N = 3 with the
first hidden layer being over-complete with 150 nodes and
the multimodal fusion layer consisting of 300 nodes.

Quantitative Results: For evaluating our hybrid model,
we present two different kinds of evaluations 1) Unimodal
Classification Tab. 1 and Multimodal Classification Tab. 1
and 2) Unimodal generation Tab. 2 Fig. 3(a) and Multi-
modal Generation Tab. 3 Fig. 3(b). Below we go into more
details regarding each of the experiments.

Unimodal classification, (Tab. 1) given features from a
single modality, the task is to detect events, as previously
described. We report the average classification accuracy.
As we can see, in each dataset AVEC (AVEC-A, AVEC-
V), AVLetters (AVLetters-A, AVLetters-V) and CUAVE
(CUAVE-A, CUAVE-V), the CRBM tends to be better than
both the RBM and raw features. We can further observe that
the CRFs tend to outperform SVMs. This happens due to
the temporal component of the data that was explicitly mod-
eled by using CRFs, thereby justifying our choice of CRFs
as a discriminative model. Also, notice that CRBMs tend to
outperform RBMs and RAW, justifying the use of CRBMs
for learning temporal representations of the data.

Unimodal generation (Tab. 2), this experiment allows us
to evaluate the ability of the unimodal CRBM to deal with
missing data as shown in Fig. 3(a). We remove the last



(10%, 30%) of the data from each sequence and have the
model generate the missing data. Subsequently, we predict
the class label using both the available and generated data.
As seen in Tab 2, our CRBM outperforms the RBM model.
As you can see, the CRBM was able to learn a good rep-
resentation of the data, that allows for dealing with missing
data. The drop in accuracy becomes significant when more
data is missing.

Multimodal classification (Tab. 6) shows the average ac-
curacy on the AVEC dataset. We can observe that our
CRF-CRBM and CRF-RBM models perform comparable
to the state-of-the-art [21, 18, 22]. However, a key advan-
tage of our hybrid approach is its ability to generate missing
data, enabling it to handle missing unimodal or cross-modal
data. None of the other approaches [21, 18, 22] are capa-
ble of dealing with missing data. Table 5 shows the clas-
sification performance for visual speech recognition on the
AVLetters dataset [2]. Our hybrid model shows a substan-
tial improvement over the state-of-the-art which include the
hand-engineered features [11, 29] as well as the SVM-RBM
model of [13]. Table 4 shows the classification performance
for visual speech recognition on the CUAVE dataset [15].
Please note that the models [6, 10, 14], use a visual front-
end system that is substantially more complex than ours. In
our case, we use the same front end as in [13] which ex-
tracts bounding boxes ignoring orientation and perspective
changes. In multimodal classification (Tab. 1), we detect
events given both modalities. The multimodal classification
outperforms unimodal classification, which proves that our
model is able to learn a good joint representation of the data.

Multimodal generation (Tab. 3), we evaluate the ability
of our model to generate data in a cross modal setup as
shown in Fig. 3(b). As seen in Tab 3, our CRBM is able
to outperform the RBM model in most cases. Note that
chance performance for CUAVE dataset is 10% [13], and
for AVLetters is 4%.

6. Conclusion
We have proposed a hybrid model comprising of tempo-

ral generative and discriminative models for classifying se-
quential data from multiple heterogeneous modalities. We
employ a deep networks based temporal generative model
which enables us to learn a rich feature representation to
model the short-term temporal characteristics, while also al-
lowing us to handle missing data. The discriminative com-
ponent of our model consists of a CRF, which enables mod-
eling long range temporal dependencies leading to a supe-
rior classification performance. An extensive experimental
evaluation on three different datasets demonstrates the supe-
riority of our approach over the state-of-the-art. In future,
we plan to explore a joint framework for simultaneously
learning the generative and discriminative components of
the hybrid model.

Model Accuracy
Discrete Cosine Transform [6] 64
Fused Holistic+Patch [10] 77.08
Visemic AAM [14] 83
SVM-RBM [13] 66.7
CRF-RBM 68.6
CRF-CRBM 69.1

Table 4. Classification accuracy using multimodal data on the
CUAVE dataset.

Model Accuracy
Multiscale Spatial Analysis [11] 44.6
LBP [29] 58.85
SVM-RBM [13] 59.2
CRF-RBM 63.8
CRF-CRBM 67.1

Table 5. Classification accuracy using multimodal data on the
AVLetters dataset.

Model mean Accuracy
Baseline-RAW [21] 65.27
SVM-RAW (Late Fusion)[18] 70.55
LDCRF-RAW (Late Fusion)[18] 75.40
PLS-SVM (Late Fusion)[22] 67.37
CRF-RAW (Late Fusion)[22] 69.97
HCRF-RAW (Late Fusion)[22] 69.90
JHCRF-RAW [22] 71.85
CRF-RBM 68.4
CRF-CRBM 70.8

Table 6. Average classification accuracy using multimodal data on
the AVEC dataset [21].
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