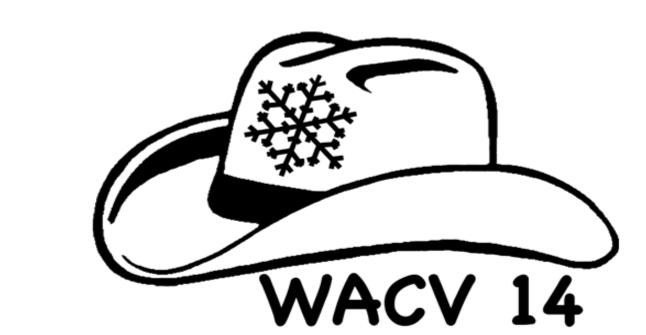


Multimodal Fusion using Dynamic Hybrid Models



Mohamed R. Amer, Behjat Siddiquie, Saad Khan, Ajay Divakaran and Harpreet Sawhney SRI International, Princeton, NJ

Problem and Motivation

Goal

Detect Multimodal events in time varying sequences.

Application

- Analysis of Human behaviors and emotions: Facial expressions, paralinguistics, eye gaze, hand gestures, head motion etc.
- Temporal dynamics within and across modalities is key to modeling and capturing affect.

Approach

> Staged hybrid model: exploits the strength of discriminative classifiers along with the representational power of generative models.

Staged-Dynamic Hybrid Model

Why Staged Hybrid Dynamic Model?

- > (Staged) training each model separately, where the discriminative model trained on representations learned by the generative model.
- > (Hybrid) exploiting the generative model's expressiveness and the discriminative model's classification power.
- (Dynamic) Modeling the temporal content of time varying data is important.

Generative – Multimodal Conditional Restricted Boltzmann Machines:

Multimodal CRBMs consists of single CRBMs, and fusion CRBM.

$$p_{\mathrm{G}}(\mathbf{v}_{t}, \mathbf{h}_{t}|\mathbf{v}_{< t}) = \exp[-E_{\mathrm{G}}(\mathbf{v}_{t}, \mathbf{h}_{t}|\mathbf{v}_{< t})]/Z(\boldsymbol{\theta}_{\mathrm{G}})$$

$$Z(\boldsymbol{\theta}_{\mathrm{G}}) = \sum_{\mathbf{v},\mathbf{h}} \exp[-E_{\mathrm{G}}(\mathbf{v}_{t},\mathbf{h}_{t}|\mathbf{v}_{< t})], \quad \boldsymbol{\theta}_{\mathrm{G}} = \{\mathbf{a},\mathbf{b},A,B,W\}$$

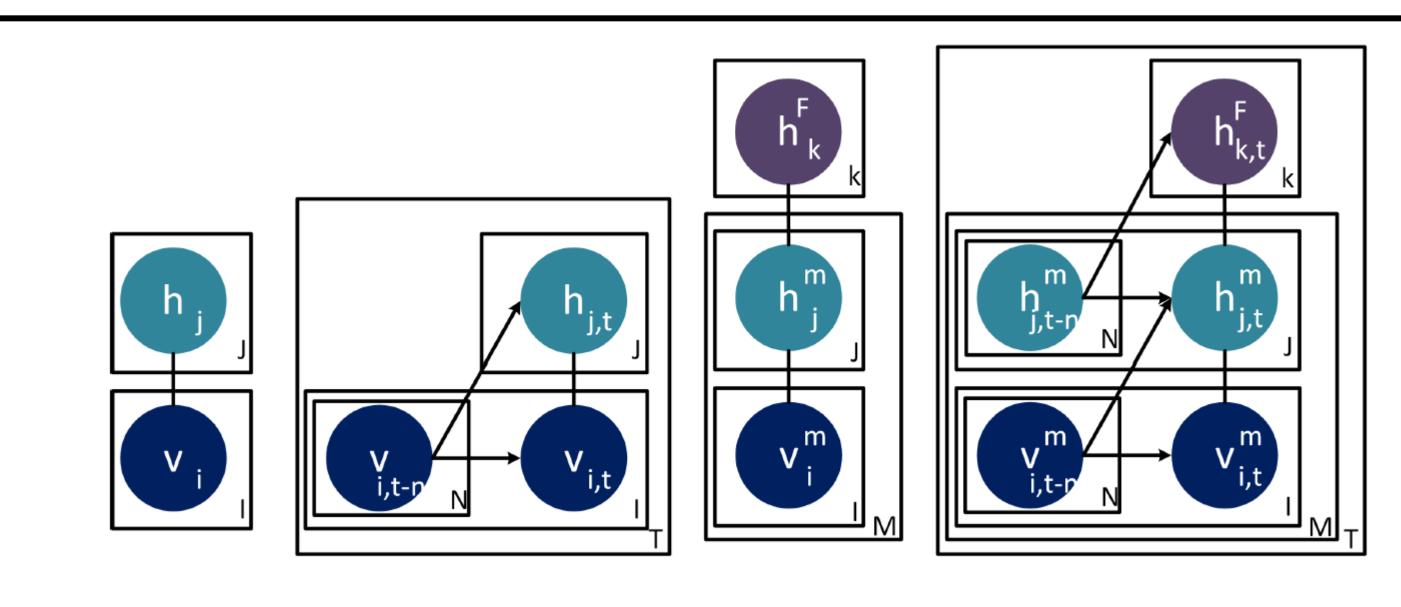
$$E_{\mathrm{G}}(\mathbf{v}_{t}, \mathbf{h}_{t} | \mathbf{v}_{< t}^{\mathbf{v}, \mathbf{n}}; \boldsymbol{\theta}_{\mathrm{G}}) = \sum E_{\mathrm{S}}(\mathbf{v}_{t}^{m}, \mathbf{h}_{t}^{m} | \mathbf{v}_{< t}^{m}) + E_{\mathrm{F}}(\mathbf{h}_{t}^{1, \dots, M}, \mathbf{h}_{t}^{F} | \mathbf{h}_{< t}^{1, \dots, M})$$

Each of the single CRBMs captures the representation of one modality,

$$E_{\rm S}(\mathbf{v}_t^m, \mathbf{h}_t^m | \mathbf{v}_{< t}^m) = -\sum_i (c_{i,t}^m - v_{i,t}^m)^2 / 2 - \sum_j d_{j,t}^m h_{j,t}^m - \sum_{i,j} v_{i,t}^m w_{i,j}^m h_{j,t}^m$$

The fusion CRBM combines the representations learned from the different modalities.

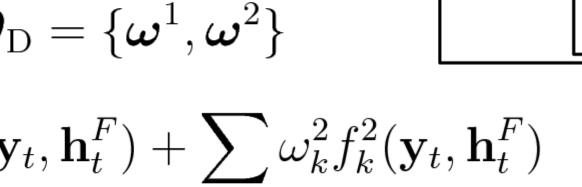
$$E_{\mathrm{F}}(\mathbf{h}_{t}^{1,\ldots,M},\mathbf{h}_{t}^{F}|\mathbf{h}_{< t}^{1,\ldots,M}) = -\sum_{i,m} c_{i,t}^{m} h_{i,t}^{m} - \sum_{j} d_{j,t}^{F} h_{j,t}^{F} - \sum_{i,j,m} h_{i,t}^{m} w_{i,j}^{F} h_{j,t}^{F}$$

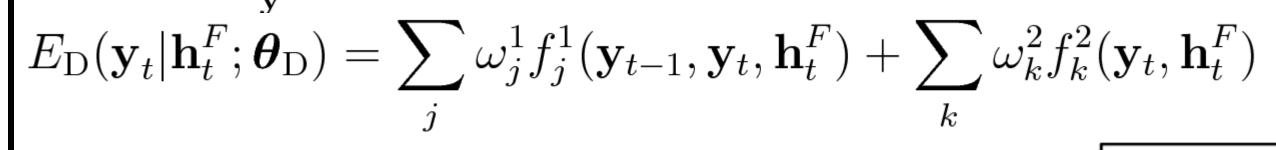


Discriminative – Conditional Random Fields:

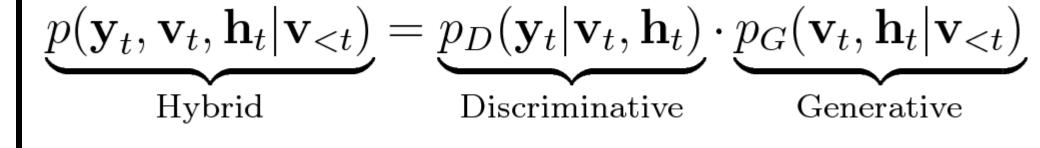
The CRF operates on the features learned using MMCRBM.

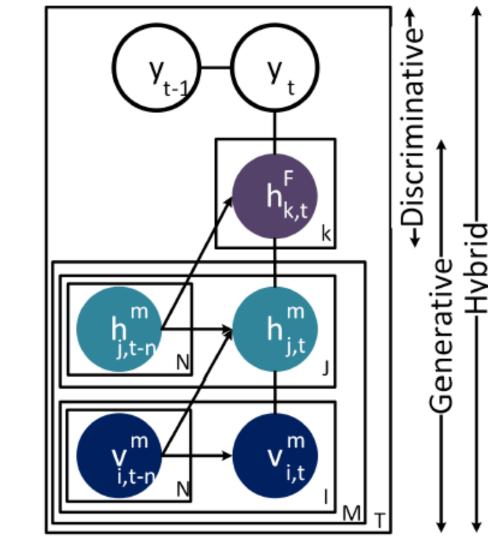
$$p_{\mathrm{D}}(\mathbf{y}_{t}|\mathbf{h}_{t}^{F};\boldsymbol{\theta}_{\mathrm{D}}) = \exp[E_{\mathrm{D}}(\mathbf{y}_{t}|\mathbf{h}_{t}^{F};\boldsymbol{\theta}_{\mathrm{D}})]/Z(\boldsymbol{\theta}_{\mathrm{D}}),$$
 $Z(\boldsymbol{\theta}_{\mathrm{D}}) = \sum E_{\mathrm{D}}(\mathbf{y}|\mathbf{h}_{t}^{F};\boldsymbol{\theta}_{\mathrm{D}}), \quad \boldsymbol{\theta}_{\mathrm{D}} = \{\boldsymbol{\omega}^{1},\boldsymbol{\omega}^{2}\}$





Hybrid Dynamic Model





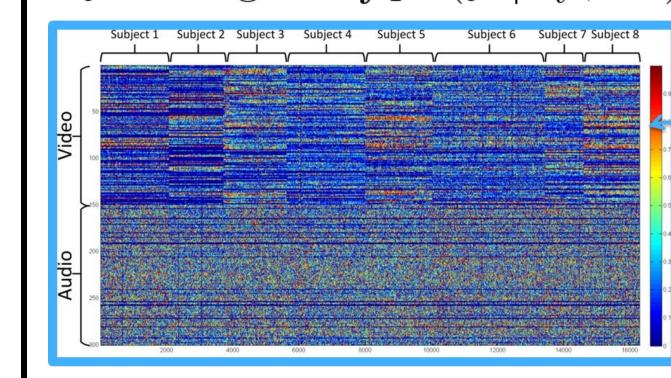
Learning

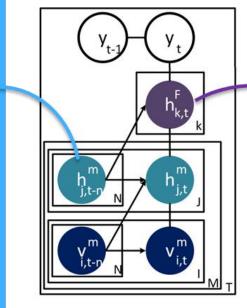
Generative – Contrastive Divergence $\theta_G = \{a, b, A, B, W\}$ Discriminative – Max. Likelihood Estimation $\theta_D = \{\omega^1, \omega^2\}$

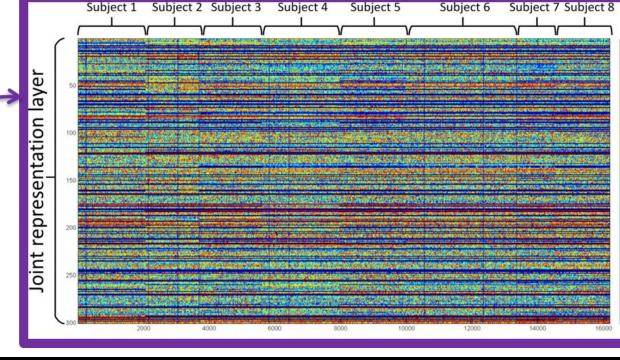
Inference (Bottom-Up)

- > Activate each modality of the MMCRBM:
- $p_G(h_j^m = 1 | \mathbf{v}^m, \mathbf{v}_{< t}^m) \sim \sigma(c_j^m + \sum_i v_i^m w_{ij}^m)$
- ightharpoonup Activate the fusion layer: $p_G(h_k^F = 1 | \mathbf{h}^{1,...,M}, \mathbf{h}^{1,...,M}_{< t}) \sim \sigma(c_k^F + \sum_j h_j^{1,...,M} w_{jk}^F)$
- > Fused features classified by the CRF

 $\mathbf{y}_t = \arg\max_{\mathbf{y}} p_{\mathrm{D}}(\mathbf{y}_t | \mathbf{h}_t^F; \boldsymbol{\theta}_{\mathrm{D}})$







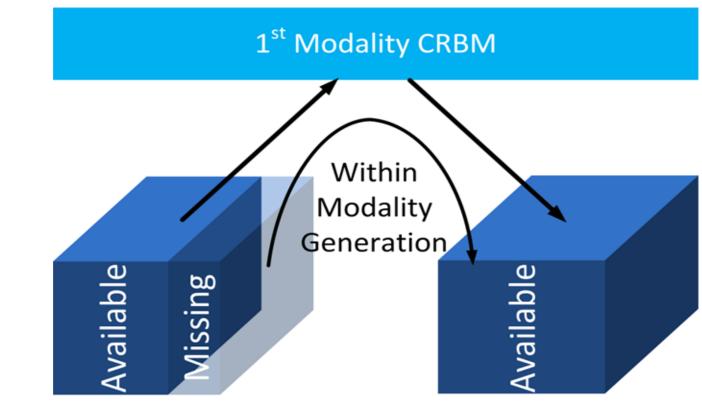
Results and Conclusions

Average Classification Accuracy

Compare our approach against the relevant baselines and the state-of-the-art on the AVEC, AVLetters and CUAVE datasets.

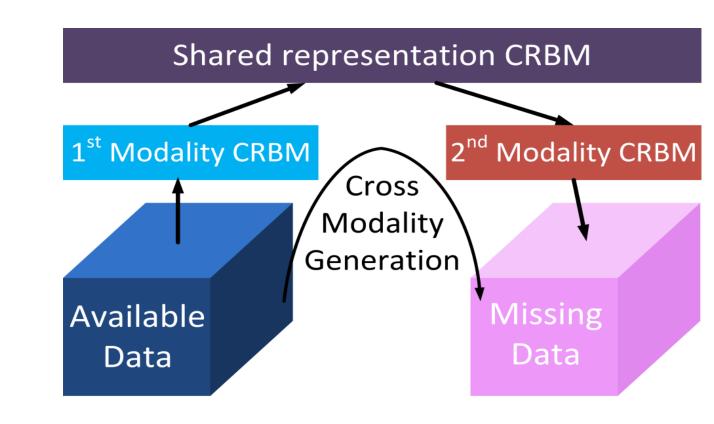
Model/Dataset	AVEC-A	AVEC-V	AVEC-AV	AVLetters-A	AVLetters-V	AVLetters-AV	CUAVE-A	CUAVE-V	CUAVE-AV
SVM-RAW	64.8	62.4	67.4	55.8	56.2	58.5	61.5	58.4	65.0
CRF-RAW	68.1	63.5	69.9	58.4	59.3	60.0	64.3	62.0	66.8
SVM-RBM	61.8	63.9	67.8	58.4	62.1	62.9	65.1	61.8	65.4
CRF-RBM	67.6	65.4	68.3	62.6	64.6	63.8	67.6	65.2	68.6
SVM-CRBM	65.8	66.9	68.2	61.2	62.6	64.8	65.3	64.6	66.7
CRF-CRBM	69.2	70.1	70.8	66.9	64.8	67.1	67.9	66.3	69.1

Missing Data: within Modality



Model/Dataset	AVEC-A	AVEC-V	AVLetters-A	AVLetters-V	CUAVE-A	CUAVE-V
SVM-RBM (0%)	61.8	63.9	58.4	62.1	65.1	61.8
SVM-CRBM (0%)	65.8	66.9	61.2	62.6	65.3	64.6
SVM-RBM (10%)	48.6	46.5	50.7	54.5	59.7	42.8
SVM-CRBM (10%)	54.9	52.1	53.6	58.2	63.1	52.6
SVM-RBM (30%)	35.5	31.2	39.2	32.1	36.1	31.9
SVM-CRBM (30%)	42.7	40.2	45.8	41.6	43.7	41.2

Missing Data: across Modalities



SVM-RBM 31.2 28.2 27.3 25.1 23.1			11	II	11, 20 , 11	11, 50 11	Model/Dataset
	19.5	23.1	25.1	27.3	28.2	31.2	SVM-RBM
SVM-CRBM 40.4 32.1 29.6 26.5 30.7	24.4	30.7	26.5	29.6	32.1	40.4	SVM-CRBM

Conclusions

- ➤ Hybrid Dynamic Model: effective for classifying sequential data from multiple heterogeneous modalities.
- ➤ Generative Model (MMCRBM): Models short-term temporal characteristics and learns a rich feature representation.
- Discriminative Model (CRF): Models long range temporal dynamics.

Acknowledgements

- Defense Advanced Research Projects Agency
- Army Research Office

