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Abstract

We study the use of domain adaptation and transfer
learning techniques as part of a framework for adaptive ob-
ject detection. Unlike recent applications of domain adap-
tation work in computer vision, which generally focus on
image classification, we explore the problem of extreme
class imbalance present when performing domain adapta-
tion for object detection. The main difficulty caused by this
imbalance is that test images contain millions or billions
of negative image subwindows but just a few positive ones,
which makes it difficult to adapt to the changes in the pos-
itive class distributions by simple techniques such as ran-
dom sampling. We propose an initial approach to address
this problem and apply our technique to vehicle detection
in a challenging urban surveillance dataset, demonstrating
the performance of our approach with various amounts of
supervision, including the fully unsupervised case.

1. Introduction
Building visual models of objects robust to extrinsic1

variations such as camera view angle (or object pose), reso-
lution, lighting, and blur has long been one of the challenges
in computer vision. Generally, a discriminative or genera-
tive statistical model is trained by acquiring a large set of ex-
amples, extracting low-level features which encode shape,
color, or texture from the segmented or cropped objects, and
finally, training the model (usually a classifier) using the ex-
tracted features vectors. Applied to a test image, the trained
model generally works if the training set was representative
of the test set and of the particular test image, e.g., if the
training set contained a sample of the object with the same
pose under similar lighting with similar resolution. Unfor-
tunately, there are often cases when this assumption is vio-
lated, resulting in a sharp performance drop.

Recently, the machine learning community has focused
on cases when these assumptions are violated as part of the
problem of domain adaptation, seeking to develop effective

1as opposed to intrinsic or intra-class variation of an object category
with respect to different shapes, sizes, textures, colors, etc.

Figure 1. An example of the effects of domain change for the task
of vehicle detection and our improved results after domain adap-
tation. Here, the vehicle detector is trained on training data, the
source domain, and is applied to testing data (a new domain) that
differs from the training data in various ways, e.g., viewing angles,
illumination. If we directly apply the trained model to a new do-
main, the confidence map has multiple peaks, many of which do
not correspond to vehicles. After domain adaptation, the highest
peaks correspond to the two vehicles in the foreground. (Note:
Background regions have been obfuscated for legal/privacy rea-
sons)

mechanisms to transfer or adapt knowledge from one do-
main to another related domain. While these advances have
also been applied by the computer vision community with
promising results [22, 17, 15, 1], object models are still be-
ing trained and tested on images consisting of only one ob-
ject zoomed and cropped at the center of a relatively uni-
form background. As a result, in such experimental settings
the general problem of object detection is reduced to that
of image classification. While domain adaptation is a chal-
lenging problem for image classification, it becomes even
more challenging for object detection when target domain
labels are unavailable and the majority of the image is oc-
cupied by the background class (a random sampling will not
be sufficient for effective domain adaptation).

We focus on domain adaptation applied to vehicle detec-
tion in urban surveillance videos, where the backgrounds,
numbers, and poses of the objects of interest are uncon-
trolled and vary highly. The detection and localization of
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vehicles in surveillance video, which is typically low reso-
lution, is difficult as it requires dealing with varying view-
point, illumination conditions (e.g. sunlight, shadows, re-
flections, rain, snow) and traffic, where vehicles tend to par-
tially occlude each other. These conditions are localized
in space and time, allowing us to model realistic domain
changes by considering two cameras at different locations
and points in time as the source and target domain. As
we will demonstrate, the changes between some domains
are sufficiently large that the classifier trained on the source
domain performs quite poorly. By applying recent domain
adaptation techniques, we obtain significant improvements
in these cases (Fig 1).

We use Transfer Component Analysis (TCA) [20], an
unsupervised domain adaptation and dimensionality reduc-
tion technique, to learn a set of common transfer compo-
nents underlying both domains such that, when projected
onto this subspace, the difference in data distributions of
two domains can be dramatically reduced while preserving
data properties. Standard machine learning algorithms can
then be used in this subspace to train classification or re-
gression models across domains. While TCA obtains the
transfer components by aligning distribution properties that
are not class-aware, i.e., it does not guarantee that the same
class in separate domains will project to the same coordi-
nates in the shared subspace, we find that for our problem
this alignment yields impressive results. Many other do-
main adaptation or transfer learning techniques can be ap-
plied instead of TCA, but given the surprisingly good per-
formance of TCA on our dataset, we leave a comparison
between other potential techniques for future work, focus-
ing instead on studying why TCA works as well as it does
on our data.

Our contributions are the following:

• we evaluate a domain adaptation technique, TCA, ap-
plied to vehicle detection on a challenging dataset and
find that it is surprisingly effective despite its simplic-
ity

• we provide insights into what makes TCA perform so
well on our dataset by comparing to basic machine
learning techniques (e.g., PCA)

• we propose an initial approach to selecting target sam-
ples for domain adaptation in a more general object
detection setting (multiple object instances, objects
are generally not centered, and the image consists of
mostly background)

The remainder of the paper is organized as follows. We
review related literature in Section 2, followed by a detailed
description of our proposed approach in Section 3. We de-
scribe the experiments and results in Section 4 and finally
conclude in Section 5.

2. Related Work
Object category recognition and detection approaches

that are invariant to view and other extrinsic changes have
long been sought by researchers in computer vision [16].
Several methods address changes in view by learning sep-
arate appearance models for a small number of canonical
poses corresponding to each object category [13, 14]. Other
approaches employ parts-based models, which model vari-
ations in part appearance and inter-relationships over mul-
tiple views [23, 25, 26, 24]. Recently, Gu and Ren [14]
proposed a discriminative approach based on a mixture of
templates, achieving the best performance on two differ-
ent 3D object recognition datasets. Unfortunately, this per-
formance gain is achieved at up to an order of magnitude
higher cost–depending on the number of templates used–
than a comparable view-specific method that employs a
similar feature representation.

The problem of learning object models that can general-
ize to new views or domains is closely related to the prob-
lems of transfer learning [21] and domain adaptation [10],
the two main groups of work that address the effects of do-
main change in machine learning. In general, a domain
consists of the input data feature space and an associated
probability distribution over it. If two domains are different,
they may have different feature spaces or different marginal
probability distributions. The problem of domain adapta-
tion addresses domain changes, when the marginal distribu-
tion of the data in the training set (source domain) and the
test set (target domain) are different but the tasks or condi-
tional distributions of some additional variables, or labels,
given the data are assumed to approximately the same. The
problem of transfer learning addresses situations in which
marginal distributions of data between the domains are the
same but either the feature spaces or conditional distribution
of the labels given data are different.

The natural language processing community has lately
paid considerable attention to understanding and adapting
to the effects of domain change. Daume et al [10] model
the data distribution corresponding to source and target do-
mains as a common shared component and a component
that is specific to the individual domains. Under certain as-
sumptions characterizing the domain shift, there have also
been theoretical studies on the nature of classification er-
ror across new domains [4, 2]. Blitzer et al [8, 7] pro-
posed a structural correspondence learning approach that
selects some pivot features that would occur frequently in
both domains. Ben-David et al [3] generalized the results of
[8] by presenting a theoretical analysis on the feature rep-
resentation functions that should be used to minimize do-
main divergence, as well as classification error, under cer-
tain domain shift assumptions. Insights related to this line
of work were also provided by [6, 19]. Wang and Mahade-
van [9] pose this problem as unsupervised manifold align-



ment, where source and target manifolds are aligned by pre-
serving a notion of the neighborhood structure of the data
points.

In visual object recognition, there is less consensus on
the basic representation of the data, so it is unclear how rea-
sonable it is to make subsequent assumptions on the rele-
vance of extracted features [8] and the transformations in-
duced on them [9]. However, there have been recent efforts
focusing on domain shift issues for 2D object recognition
applications. For instance, Saenko et al [22] proposed a
metric learning approach that can use labeled data for a few
categories from the target domain to adapt unlabeled cat-
egories to domain change. Bergamo and Torresani [5] per-
formed an empirical analysis of several variants of SVM for
this problem. Lai and Fox [18] performed object recogni-
tion from 3D point clouds by generalizing the small amount
of labeled training data onto the pool of weakly labeled data
obtained from the internet. Gopalan et al [1] take an in-
cremental learning approach, following a geodesic path be-
tween the two domains modeled as points on a Grassmann
manifold.

We extend recent work by applying a domain adaptation
technique, TCA [20], to the problem of object detection.
We study the effects of varying amounts of balanced target
domain training samples, similar to the classification set-
ting of [22, 17, 15, 1], and we also explore the automatic
acquisition of training data from the target domain, which
is more applicable to the detection problem. In the detection
setting, the class labels are unavailable, and the classes are
highly imbalanced since the majority of windows in the im-
age contain background and only a few are good examples
of the object class.

3. Proposed Method

3.1. Formulation

Following the notation of Pan et al. [20], we define a do-
main to consist of a feature space and a distribution P (X),
defined over a set of examples X = {x1, . . . , xn} from the
feature space. The examples in X have a corresponding set
of labels Y = {y1, . . . , yn}. While domains can differ both
in the feature space and in the marginal distribution, we con-
sider only the case where the feature space remains constant
across domains. Given training features XS and labels YS
from the source domain and training features XT from the
target domain, our task is to learn a model that can predict
the labels on new samples from the target domain.

While most domain adaptation methods assume that
P (XS) 6= P (XT ) and that P (YS |XS) = P (YT |XT ), TCA
[20] replaces the second assumption with a more realis-
tic one, that probability density P (Y |X) may also change
across domains, but that there exists a transformation φ
such that P (φ(XS)) ≈ P (φ(XT )) and P (YS |φ(XS)) ≈

P (YT |φ(XT )). Based on these assumptions and given XS

andXT , TCA obtains the transformation φ. A classifier can
then be trained on transformed features φ(XS) and labels
YS and applied to transformed out-of-sample target features
φ(Xo

T ) to predict labels Y o
T .

3.2. Transfer Component Analysis

Given training samples from two domains, XS and XT ,
TCA [20] obtains a transformation φ to a latent space
that minimizes the distance between the transformed dis-
tributions while preserving properties of both input feature
spaces. This optimization is performed in a reproducing
kernel Hilbert space (RKHS), under the assumption that
φ is a feature map which defines a universal kernel. The
distance between the transformed distributions is measured
by the empirical estimate of Maximum Mean Discrepancy
(MMD):

MMD(XS , XT ) = ||
1

n1

n1∑
i=1

φ(xSi
)− 1

n2

n2∑
i=1

φ(xTi
)||2,

where n1 and n2 are the number of samples in XS and XT ,
respectively, and the norm is the RKHS norm. Properties
of the input feature spaces are preserved by maximizing the
variance of the transformed data.

Instead of directly optimizing for the feature map φ,
TCA first applies a parametric kernel (e.g., linear or
RBF) to obtain the kernel matrix K = [k(xi, xj)] ∈
R(n1+n2)×(n1+n2) of the source and target training sam-
ples, and then searches for a matrix W̃ ∈ R(n1+n2)×m

that projects the empirical kernel map K−1/2K to an m-
dimensional space W̃TK−1/2K. Letting W = K−1/2W̃ ,
the feature map φ induced by the kernel KWWTK is
thus optimized implicitly by the following constrained min-
imization:

min
W

tr(WTKLKW ) + µtr(WTW )

s.t. WTKHKW = I.

Here, the MMD criterion is rewritten as tr(WTKLKW ),
where Lij = 1/n21 if xi, xj ∈ XS , Lij = 1/n22 if
xi, xj ∈ XT , and Lij = −1/(n1n2) otherwise. The term
tr(WTW ) is a regularizer that penalizes aribrarily com-
plex solution, and in conjunction with the constraint that
the projected data has unit covariance, WTKHKW = I ,
whereH is the centering matrixH = I−1/(n1+n2)11T , it
also results in projection directions that maximize data vari-
ance. The parameter µ controls the trade-off between min-
imizing the distance between distributions and maximizing
data variance. As Pan et al. [20] demonstrate, this opti-
mization problem can be reformulated without constraints
as

max
W

tr((WT (KLK + µI)W )−1WTKHKW ).



This optimization problem is solved by obtaining the m
leading eigenvectors of (KLK + µI)−1KHK. A new
sample xo is mapped into the latent space by comput-
ing WT [k(x1, xo), . . . , k(xn1+n2

, xo)]
T , where xi are the

training samples.

3.3. Unsupervised adaptation

For an object detector to adapt to a new domain using
our proposed approach, a set of features from the target do-
main, XT , is needed during the training stage. A straight-
forward unsupervised approach to obtaining such a set for a
multi-scale sliding window detector would be to randomly
select a number of windows that would be encountered dur-
ing the detection process. However, this would yield a ma-
jority of windows from the negative class (which consists
of millions or billions of windows when using conventional
sliding windows techniques) and only a few if any (most
likely poorly localized) positive samples, since there are
usually only a few instances of the object of interest in
an image. This would cause domain adaptation to adapt
only to the background class, and not to the class of inter-
est (while penalty parameters can be modified to deal with
imbalance, e.g., C in SVM, that does not help when it is
unclear which sample is a positive sample from a randomly
sampled dataset). A potential solution would be to intro-
duce a small amount of supervision into the process. Since
our proposed approach does not use class labels during the
domain adaptation step, it is only important that the classes
are balanced by the user somehow to prevent the joint la-
tent space from being dominated solely by the target back-
ground class. While this may be an acceptable solution,
especially if it is sufficient for the user to annotate a very
low number of examples (in our experiments we show that
very little supervision is necessary for significant improve-
ments), we are also interested in studying the fully unsuper-
vised case.

In the absence of any supervision, we propose a scheme
that relies on a detector trained on XS and YS alone to ex-
tract positive and negative examples from the target distri-
bution. Before performing domain adaptation, our scheme
involves extracting the top and bottom scoring windows
subject to some threshold (after non-maximal suppression),
as the positive and negative samples to include in XT .
While a detector trained on the source domain alone would
not be very accurate, we expect that regions of very high
confidence are more likely to contain the object of interest
than the regions of low confidence. While the detection rate
may not be high, labels are not needed for the target train-
ing set, so labeling mistakes will not be very detrimental.
Most importantly, we expect the resulting set of windows to
contain more positive samples than if it were selected ran-
domly.

4. Experiments and Results

4.1. Data Set Collection

We collected more than 400 hours of video from 50 dif-
ferent traffic surveillance cameras, located in a large North
American city, over a period of several months. We adopted
a simple method to extract images of cars from these videos,
for training our object detection models. We performed
background subtraction and obtained the bounding boxes
of foreground blobs in each video frame. We also computed
the motion direction of each foreground blob using optical
flow. Vehicles were then extracted using a simple rule-based
classifier which takes into account the size and motion di-
rection of the foreground blobs. The range of acceptable
values of the size and motion-direction were manually spec-
ified for each camera view. We manually removed the ac-
cumulated false positives. This simple procedure enabled
us to collect a large number of images of vehicles(about
220000) in a variety of poses and illumination conditions,
while requiring minimal supervision. We utilized the mo-
tion direction of each foreground blob for categorizing the
images of vehicles of each camera viewpoint into a set of
clusters. The clustering of images leads to categorization of
the training images into a two level hierarchy, where the first
level of categorization is according to the camera viewpoint
and the second level is based on the motion-direction within
each camera viewpoint. Since all the camera viewpoints are
distinct, each leaf node of our hierarchy consists of training
images of vehicles in a distinct pose. On an average, each
camera viewpoint has about two clusters, resulting in a to-
tal of about 99 clusters (leaf nodes of the hierarchy). These
clusters, which we call domains, cover an extremely diverse
collection of vehicles in different poses, lightings and sur-
roundings. Fig. 2 shows a few examples of the average
images of the 99 training domains.

In order to evaluate our approach with respect to object
detection, we annotated a set of 1616 frames collected from
21 out of the same 50 cameras that were used for collect-
ing the training data. From each camera viewpoint, frames
were collected at different times of the day and contain large
variations in illumination due to the changes in the direction
of sunlight and the resulting reflections and shadows from
buildings. Apart from the viewpoint which changes signifi-
cantly across the cameras, the amount of traffic also varies.
On an average each test image contains between one to three
vehicles.

4.2. Image Classification

Since our sliding-window detection approach applies a
binary classifier at each window location, we first evaluate
the performance of TCA on visual domains by conducting
binary classification on our training set of car and back-
ground images from 99 domains. For these experiments,



Figure 2. A few examples of the training domains presented here by their average images. Note the variations in pose and illumination
across domains.

the classification performance is measured by average pre-
cision. For all experiments throughout this paper, we used
HOG features (as implemented by [13]) with a dimension of
55,648 to represent images and an SVM with linear kernel
(as implemented by LibLinear [12]) as the classifier. For the
baseline method, we trained the classifier on images from
only one of the 99 domains (source domain), and tested it on
all the images of the other domains (target domains) with-
out any adaptation. For the cases where the source and tar-
get domains were the same, the images were split into half
for training and testing. We perform the same procedure for
our proposed method but instead trained and tested the clas-
sifier on feature vectors projected onto the latent subspace
learned by TCA, using a linear kernel and µ = 1 for all ex-
periments. The dimension of the subspace (m) was set to 15
for all the experiments. This selection was done based on
the results of a set of pilot experiments in which we varied
the values of m from 5 to 500 and observed that classifica-
tion performance starts to degrade when m is below 10. As
shown in Fig. 3 even with the decreasing number of unla-
beled samples of the target domain from 50% down to only
10 random samples, the adapted classifier can still outper-
form the baseline in majority of cases. Once the number of
target samples is decreased to 2, we are no longer able to
improve performance.2 Of particular note is that our pro-
posed domain adaptation approach is able to drastically im-
prove results even when the baseline performance is close
to chance, often improving performance close to an average
precision of 1.

4.2.1 Comparison with Principal Component Analysis
(PCA)

While any domain adaptation approach could be applied to
the object detection task, TCA performs surprisingly well
aligning means and maximizing data variance with a linear
kernel. In an attempt to understand which TCA components
lead to these results (dimensionality reduction, mean align-
ment, variance maximization), we compare to a number of
alternatives based on Principal Component Analysis (PCA).
We are especially interested in the cases where domains are
so different from each other that directly applying the classi-

2Note that when only 2 or 10 samples are chosen from the target do-
main, we repeat the experiment 20 and 10 times, respectively, to remove
the effects of selecting a few bad target samples.

fier trained on the source domain alone yields classification
rates close to chance. As described in section 3, the effect
of TCA is threefold: 1) the means in the RKHS are close
to each other, 2) data variance is maximized, and 3) the di-
mensionality of the input data is reduced prior to classifier
training. Since PCA obtains a subspace in which the vari-
ance of the projected data is maximized, it produces two
of the three effects of TCA. In addition, we note that if the
MMD criterion is removed from the TCA optimization, the
result is that only variance is maximized (as for PCA), but
that the formulation ensures that the projected data has unit
covariance, whereas the standard implementation of PCA
yields orthonormal projection vectors instead. To eliminate
this difference, we whiten [11] the PCA projected data as a
post-processing step to ensure that its covariance is also a
unit matrix. Figure 4 shows the performance of our base-
line approach, TCA, PCA, and PCA with whitening as a
post-processing step. Interestingly, performing PCA pro-
vides an improvement in performance, but at the cost of
some negative transfer in some easy cases. The whiten-
ing post-processing step mimicks the results of TCA very
closely (although TCA still outperforms), removing most
spurious negative transfer cases. While we also performed
experiments (not shown) where the means of the source and
target distributions were removed to align them exactly, we
did not observe an improvement in performance as we did
for PCA and PCA with whitening. These preliminary re-
sults lead us to believe that it is the combination of dimen-
sionality reduction and whitening which contribute most to
the improved adaptation to domain change.

4.3. Object Detection

Here we present the results of running the classifiers
trained as described in section 4.2, at multiple scales and
in a sliding window detection fashion on our test data set.
For our semi-supervised approach, we use 100 positive and
negative samples from the target domain for domain adap-
tation. We perform experiments by applying each of the 99
training domains to each of the 21 testing domains, yield-
ing 99 × 21 possible testing scenarios. Figure 5 shows the
performance graphs for two examples of these experiments.

For our proposed method of unsupervised adaptation,
where a balanced set of target samples are obtained au-
tomatically, we select a subset of testing scenarios where
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Figure 3. A comparison of performance of the baseline classifiers with the adapted ones. To simplify visualization, the results have been
sorted by the average precisions of the baseline classifiers. Adaptation by (a) 50%, (b) 10%, (c) 10, and (d) 2 samples from the target
domains.
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Figure 4. Performance comparison of TCA with PCA and PCA plus whitening on four test domains. By performing PCA and then
whitening the projected data, we are able to match much (though not all) of the performance improvement of TCA.

the performance increase by our semi-supervised adaptation
approach, in which the target samples are obtained man-
ually, is most pronounced. We focus on these examples
because we expect them to be the most difficult ones for

our unsupervised approach, since it relies on first applying
the baseline algorithm (which is not adapted to the new do-
main), and it is in these examples that the baseline algorithm
is performing the worst.
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Figure 5. Comparison of performance between baseline detectors and the semi-supervised adapted ones. It showcases two examples of the
99 graphs resulted from the 99 x 21 testing scenarios.

Table 1. Averaging of the detection results with semi-supervised
adaptation over all the target domains

Average Precision-baseline detector 0.26

Average Precision-detector with 0.41
semi-supervised adaptation

Average performance improvement 61.28%

A limited number of positive and negative samples from
the target domain (1-12 depending on results of the base-
line detections) were automatically acquired by running the
baseline detector on a few frames of the target domain. The
most and least confident predictions by the baseline de-
tectors were used correspondingly as positive and negative
samples of the target domain. As Figure 6 shows, while the
performance improvement obtained by unsupervised adap-
tion (green curve) is lower than that of semi-supervised
method (red curve), it still outperforms the baseline detector
(blue curve) in majority of cases.

The difference in performance between the unsupervised
and semi-supervised approaches can be a result of two fac-
tors: 1) poor quality positive and negative samples, and
2) fewer positive and negative samples from the target do-
main. To further investigate whether the degradation is a
result of the reduced numbers or the poor quality of the
samples from the target domain, we repeat the detection
experiments with semi-supervised adaptation but restricted
the semi-supervised approach to use same exact numbers of
target samples as the ones obtained in the unsupervised ap-
proach. Comparing the restricted sample semi-supervised
approach (cyan curve) to the unsupervised approach (green
curve) in Figure 6, we observe that when the baseline classi-
fier (blue curve) performs very poorly on the target domain
(left side of the graph), the automatically obtained samples
are too noisy for our adaptation method to work. However,
it is very promising that our unsupervised approach begins

Table 2. Averaging of the results presented in Figure 6 over all
the target domains

Ave. Prec.-baseline detector 0.09

Ave. Prec.-detector with unsupervised adaptation 0.17

(1 to 12 target samples)

Ave. Prec.-detector with semi-supervised adaptation 0.38

(1 to 12 target samples)
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Figure 6. Comparison of different approaches of domain adapta-
tion for detection

to match the performance of the semi-supervised approach
at a relatively low baseline average precision.

5. Conclusion and Future Work
We presented and evaluated an approach for domain-

invariant vehicle detection in traffic surveillance videos. Al-
though we demonstrated the effectiveness of our approach
on the task of vehicle detection, it can be potentially applied
to other object detection problems. Future work includes
extending this model to multiple source domains, multiple
object categories, and using class labels from the source or
target domains when they are available.
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