Combining Multiple Kernels for Efficient Image Classification

Behjat Siddiquie, Shiv N. Vitaladevuni and Larry S. Davis

Method

Image Classification:

- Kernel based methods (SVMs) have proved very successful
- Hard problems require multiple heterogeneous features
 Compute a kernel for each feature channel
- DIMKL proposed to systematically combine multiple kernels
- Classification Efficiency
 - Need to compute the kernel distance to every Support Vector for all feature channels
 - Virtually every training sample ends up being a Support Vector

> Multiple Kernel Learning (EMKL):

- Learns a weighted linear combination of the kernels
- Iterative optimization framework for learning the kernel weights as well as the SVM classification parameters simultaneously
- [Rakotomamonjy et al. ICML07]
- Composite kernel is a mercer kernel
- Effective for combining information from different feature channels

>Boosted Kernel Learning (BKSVM):

- □ An efficient alternative to MKL
- □ Use AdaBoost for selecting discriminative feature-sample pairs
- Reduced dimensional feature vector obtained
- Elements of vector represent kernel distance to the selected training samples in the corresponding feature space
- Kernel learned from the feature vector
- Efficiency during test phase
 - Compute kernel distances of the test sample to only the selected feature-sample pairs
 - Efficiency is a function of the number of pairs selected (can be tuned by varying the number of AdaBoost rounds)

Experiments

> UCI datasets:

- Standard Machine Learning benchmark
- Gaussian and Polynomial kernels used as the base kernels

Two orders of magnitude reduction in complexity

Dataset			BK-SVM		EMKL	
name	size	kernels	accuracy	kernel computations	accuracy	kernel computations
Liver	345	91	66.2 ± 4.7	40	65.0 ± 2.3	1607 ± 324
Ionosphere	351	442	92.1 ± 3.6	40	92.3 ± 1.4	1496 ± 266
Pima	768	117	73.7 ± 6.4	60	75.8 ± 1.6	3123 ± 526
Sonar	208	793	76.3 ± 4.9	20	78.6 ± 4.2	2538 ± 351

➢ Painting dataset:

□ 498 paintings, 6 different classes of painting styles

□ Abstract nature of styles and high variability of paintings make this a challenging problem

> Features:

- □ Texture
- Captures characteristics of the brushwork
- MR8 filter bank [Varma & Zisserman ECCV02]
- □ HOG (histograms of gradients)
 - Captures local shape
 - ${\boldsymbol{\cdot}}$ Compute features on a densely on a $\,$ grid as well as sparsely on edges
- 🗆 Color
 - Color histograms (RGB) from local patches
- □ Saliency
 - · Edge Continuity to identify salient curves
- · HOG features extracted from patches centered on salient curves

> Pyramid Match Kernel:

 $\hfill\square$ A set of features vectors are extracted from each feature channel

- Derived Pyramid Match Kernel [Grauman & Darrell ICCV05]
 - Feature space is subdivided into bins in a Pyramidal manner
 Approximate the correspondence between the feature sets by a weighted intersection kernel computed over these pyramidal bins
- Kernels corresponding to each feature channel are obtained
- □ BKSVM and EMKL learn a combination of these kernels for classification

Similar results with individual kernels

