## Incremental Multiple Kernel Learning for Object Detection

Aniruddha Kembhavi, Behjat Siddiquie, Scott McCloskey, Roland Miezianko and Larry S. Davis



## Motivation

- Components of a visual categorization system:
   Representative training dataset
   Efficient and effective feature extraction methods
- Powerful classifier
- Obtaining a generic training dataset is relatively easy
- > Obtaining a scene specific training dataset for a given application is harder
  - □ Fair amount of manual labor required for every new scene



Scene specific characteristics of a traffic intersection:
 Camera location and typical vehicle paths restrict observed poses
 Camera location restricts the negative class (background)
 Images of vehicles and background change over time

 Changing illumination conditions

- Shadows cast by the buildings



- > Our Incremental Multiple Kernel Learning (IMKL) based approach initializes with a generically obtained training database
- It tunes itself automatically towards the classification task
   Updates the training dataset, tailoring it towards the scene
- Updates the weights used to combine multiple information sources
   Tunes the classifier in an online fashion
- > Ability to remove training examples over time
  - Useful when dealing with changing illumination conditions
- ➤ IMKL approach is a fusion of:
  - In Multiple Kernel Learning (MKL) <sup>†</sup>
  - Incremental Support Vector Machine (ISVM) \*
    - † A. Rakotomamonjy, F.R. Bach, S. Canu and Y. Grandvalet
    - More efficiency in multiple kernel learning. ICML 2007
    - \* G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning NIPS 2000

- IMKL Algorithm

   KKT conditions

   IMKL Optimization Problem

    $min \sum_{i} \frac{1}{d_k} w_k w_k^T + C \sum_{i} \xi_i$   $\sum_{j} k a_i a_j O_{ij}^k + y_i b 1 =$ 
   $\sum_{j} \frac{1}{d_k} \sum_{k} o_i O_{ij}^k + y_i b 1 =$ 
   $\sum_{j} \sum_{k} d_k a_j O_{ij}^k + y_i b 1 =$ 
   $\sum_{j} \sum_{k} 0 a_i O_{ij}^k + y_i b 1 =$ 
   $\sum_{j} \sum_{k} 0 a_i O_{ij}^k + y_i b 1 =$
- $\sum_{i=1}^{k} a_{i}g_{i} = 0$   $\xi_{i} \ge 0 \quad \forall i, \quad d_{k} \ge 0 \quad \forall k, \quad \sum_{k} d_{k} = 1$   $p_{k}d_{k} = 0$   $\sum_{k} d_{k} = 1$   $\sum_{k=1}^{k} d_{k} = 1$
- Optimization problem is convex

such that  $y_i \sum \phi_k(x_i) + y_i b \ge 1 - \xi_i \quad \forall i$ 

- $\square$  KKT conditions and necessary and sufficient
- > When a new point  $x_{new}$  is added, we need to calculate its Lagrange multiplier  $\alpha_{new}$ :
  - Bounded by 0 and C
  - Begin with 0 and keep incrementing till solution is reached

 $\square$  Every time we increment  $\alpha_{new},$  we must update the remaining Lagrange multipliers, kernel weights and bias to maintain the KKT conditions

□ These changes are given by the differential forms of the KKT conditions



- > Differential equations hold when  $\alpha_{new}$  is small enough to ensure that there is no change in set membership
  - u When set membership changes, equations are updated



Termination Conditions:



